• 1. School of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China;
  • 2. Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi 541004, P. R. China;
DENG Jianzhi, Email: dengjianzhi@163.com
Export PDF Favorites Scan Get Citation

Although deep learning plays an important role in cell nucleus segmentation, it still faces problems such as difficulty in extracting subtle features and blurring of nucleus edges in pathological diagnosis. Aiming at the above problems, a nuclear segmentation network combined with attention mechanism is proposed. The network uses UNet network as the basic structure and the depth separable residual (DSRC) module as the feature encoding to avoid losing the boundary information of the cell nucleus. The feature decoding uses the coordinate attention (CA) to enhance the long-range distance in the feature space and highlights the key information of the nuclear position. Finally, the semantics information fusion (SIF) module integrates the feature of deep and shallow layers to improve the segmentation effect. The experiments were performed on the 2018 data science bowl (DSB2018) dataset and the triple negative breast cancer (TNBC) dataset. For the two datasets, the accuracy of the proposed method was 92.01% and 89.80%, the sensitivity was 90.09% and 91.10%, and the mean intersection over union was 89.01% and 89.12%, respectively. The experimental results show that the proposed method can effectively segment the subtle regions of the nucleus, improve the segmentation accuracy, and provide a reliable basis for clinical diagnosis.

Citation: ZHI Peipei, DENG Jianzhi, ZHONG Zhenxiao. Medical nucleus image segmentation network based on convolution and attention mechanism. Journal of Biomedical Engineering, 2022, 39(4): 730-739. doi: 10.7507/1001-5515.202112013 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Lung parenchyma segmentation based on double scale parallel attention network
  • Next Article

    Comparison of wall filter algorithms for ultrasonic microvascular imaging