- 1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, P. R. China;
- 2. Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China;
- 3. School of Science, Ningxia Medical University, Yinchuan 750004, P. R. China;
Remarkable results have been realized by the U-Net network in the task of medical image segmentation. In recent years, many scholars have been researching the network and expanding its structure, such as improvement of encoder and decoder and improvement of skip connection. Based on the optimization of U-Net structure and its medical image segmentation techniques, this paper elucidates in the following: First, the paper elaborates on the application of U-Net in the field of medical image segmentation; Then, the paper summarizes the seven improvement mechanism of U-Net: dense connection mechanism, residual connection mechanism, multi-scale mechanism, ensemble mechanism, dilated mechanism, attention mechanism, and transformer mechanism; Finally, the paper states the ideas and methods on the U-Net structure improvement in a bid to provide a reference for later researches, which plays a significant part in advancing U-Net.
Citation: ZHOU Tao, HOU Senbao, LU Huiling, ZHAO Yanan, DANG Pei, DONG Yali. Exploring and analyzing the improvement mechanism of U-Net and its application in medical image segmentation. Journal of Biomedical Engineering, 2022, 39(4): 806-825. doi: 10.7507/1001-5515.202111010 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. | Shichung L, Shyhliang L, Jyhshysn L, et al. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging, 1995, 14(4): 711-718. |
2. | LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324. |
3. | Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Commun Acm, 2017, 60(6): 84-90. |
4. | Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-assisted Intervention. Munich: Springer Lncs, 2015: 234-241. |
5. | Liu Liangliang, Cheng Jianhong, Quan Quan, et al. A survey on u-shaped networks in medical image segmentations. Neurocomputing, 2020, 409: 244-258. |
6. | Milletari F, Navab N, Ahmadi S, et al. V-Net: fully convolutional ceural networks for volumetric medical image segmentation// 2016 Fourth International Conference on 3D Vision. Stanford: 3DV, 2016: 565-571. |
7. | Zhou Z, Md S, Nima T, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging, 2020, 39(6): 1856-1867. |
8. | Oktay O, Schlemper J, Loic L F, et al. Attention U-Net: learning where to Look for the Pancreas (2018-5-30) [2021-11-04]. https://arxiv.org/pdf/1804.03999.pdf. |
9. | Ma Hao, Zou Yanni, Liu P. MHSU-net: a more versatile neural network for medical image segmentation. Comput Meth Prog Bio, 2021, 208(2): 106230. |
10. | Peng Dunlu, Xiong Shiyong, Peng Wenjia, et al. LCP-net: a local context-perception deep neural network for medical image segmentation. Expert Syst Appl, 2021, 168: 114234. |
11. | Chen Cheng, Liu Bo, Zhou Kangneng, et al. CSR-net: cross-scale residual network for multi-objective scaphoid fracture segmentation, Comput Biol Med, 2021, 137: 104776. |
12. | 周涛, 董雅丽, 霍兵强, 等. U-Net网络医学图像分割应用综述. 中国图象图形学报, 2021, 26(9): 2058-2077. |
13. | Cicek O, Abdulkadir A, Abdulkadir A, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation// Medical Image Computing and Computer-assisted Intervention. Athens: Springer Cham, 2016, 9901: 424-432. |
14. | Kumar A, Neha U, Ghosal P, et al. CSNet: A new DeepNet framework for ischemic stroke lesion segmentation. Comput Meth Prog Bio, 2020, 193: 105524. |
15. | Wang Y, Zhao Z, Syh B. CLCU-Net: cross-level connected U-shaped network with selective feature aggregation attention module for brain tumor segmentation. Comput Meth Prog Bio, 2021, 207: 106154. |
16. | Zhou Tao, Dong Yali, Lu Huiling, et al. APU-Net: an attention mechanism parallel U-Net for lung tumor segmentation. Biomed Res Int, 2022, 2022: 5303651. |
17. | Zhao Junting, Dang Meng, Chen Zhihao, et al. DSU-Net: distraction-sensitive U-Net for 3D lung tumor segmentation. Eng Appl Artif Intel, 2022, 109: 104649. |
18. | Xie Xiwang, Zhang Weidong, Wang Huadeng, et al. Dynamic adaptive residual network for liver CT image segmentation. Comput Electr Eng, 2021, 91: 107024. |
19. | Jiang Huiyan, Shi Tianyu, Bai Zhiqi, et al. AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in ct volumes. IEEE Access, 2019, 7: 24898-24909. |
20. | Belh K, Naima K, Nabil M, et al. Breast cancer: one-stage automated detection, segmentation, and classification of digital mammograms using unet model based-semantic segmentation. Biomed Signal Proces, 2021, 66: 102481. |
21. | Zhang Xiaoxuan, Zhu Xiongfeng, Tang Kai, et al. DDTNet: a dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer. Med Image Anal, 2022, 78: 102415. |
22. | Zhou Tao, Ye Xinyu, Lu Huilin, et al. Dense Convolutional Network and its application in medical image analysis. Biomed Res Int, 2022, 2022: 2384830. |
23. | Xu Jiangtao, Lu Kaige, Shi xingping, et al. DenseUnet generative adversarial network for near-infrared face image colorization. Signal Process, 2021, 183: 108007. |
24. | Huang Gao, Liu Zhuang, Maaten L V, et al. Densely Connected Convolutional Networks// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269. |
25. | Li Chen, Tan Yusong, Chen Wei, et al. ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation. Comput Graph, 2020, 90: 11-20. |
26. | Tang Pin, Zu Chen, Hong Mei, et al. DA-DSUnet: dual attention-based dense SU-NET for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing, 2021, 435: 103-113. |
27. | Manal G, Mohamed A, Fernando C. DU-Net: Convolutional network for the detection of arterial calcifications in mammograms. IEEE Trans Med Imaging, 2020, 39(10): 3240-3249. |
28. | Luo Zhongming, Zhang Yu, Zhou Lei. Micro-vessel image segmentation based on the AD-UNet model. IEEE Access, 2019, 7: 143402-143411. |
29. | Ke Liangru, Deng Yishu, Xia Weixiong, et al. Development of a self-constrained 3D denseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol, 2020, 110: 104862. |
30. | Nasser A, Amr A, AbdAllah E, et al. Efficient 3D deep learning model for medical image semantic segmentation. Alex Eng J, 2021, 60(1): 1231-1239. |
31. | Zhang Ziang, Wu Chendong, Sonya C, et al. DENSE-INception U-net for medical image segmentation. Comput Meth Prog Bio, 2020, 192: 105395. |
32. | Zhang Jinhua, Li Chen, Kosov S. LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation. Pattern Recogn, 2021, 115(4): 107885. |
33. | Jose D, Christian D, Ismail B. IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet. Lect Note Comput Sci, 2019, 11397: 130-143. |
34. | Zhang Jiawei, Jin Yuzhen, Xu Jilan, et al. MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation (2018-12-4) [2021-11-04]. https: //arxiv.org/pdf/1812.00352.pdf. |
35. | Wang E, Chen C, Ahmad A, et al. A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain. Future Gener Comp Sy, 2020, 108: 135-144. |
36. | Shi Jiali, Zhang Rong, Guo Lijun, et al. Dual dense context-aware network for hippocampal segmentation. Biomed Signal Proces, 2020, 61(6): 102038. |
37. | Mohammad Y, Philippe J, Farida C. Dense-Unet: a light model for lung fields segmentation in chest X-ray images// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 1242-1245. |
38. | He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778. |
39. | Liu Jin, Kang Yanqin, Qiang Jun, et al. Low-dose CT imaging via cascaded ResUnet with spectrum loss. Methods, 2021, 202: 78-87. |
40. | 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战. 电子与信息学报, 2022, 44(1): 149-167. |
41. | Lu Lin, Jian Liqiong, Luo Jun, et al. Pancreatic segmentation via ringed residual U-Net. IEEE Access, 2019, 7: 172871-172878. |
42. | Gu Zaiwang, Cheng Jun, Fu Huazhu, et al. CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging, 2019, 38(10): 2281-2292. |
43. | Hu Shunbo, Zhang Lintao, Li Guoqiang, et al. Brain deformable registration using global and local label-driven deep regression learning in the first year of life. IEEE Access, 2020, 8: 25691-25705. |
44. | Feng Ting, Wang Chuansheng, Chen Xinwei, et al. URNet: a U-Net based residual network for image dehazing. Appl Soft Comput, 2021, 102: 106884. |
45. | Liu S, Li Yuemei, Zhou Jingjing, et al. Segmenting nailfold capillaries using an improved U-Net network. Microvasc Res, 2020, 130: 104011. |
46. | Wang Zekun, Zou Yanni, Liu P. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput Biol Med, 2021, 134(12): 104449. |
47. | Waldner F, Diakogiannis F. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network ScienceDirect. Remote Sens Environ, 2020, 245: 111741. |
48. | Albert C, Sergi V, Jose B, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput Meth Prog Bio, 2020, 194: 105521. |
49. | Cao Zheng, Yu Bohan, Lei Biwen, et al. Cascaded SE-ResUnet for segmentation of thoracic organs at risk. Neurocomputing, 2021, 453: 357-368. |
50. | Alom Z, Chris Y, Tarek T, et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net)// NAECON 2018 IEEE National Aerospace and Electronics Conference. Dayton: IEEE, 2018: 228-233. |
51. | Aamer A, Biswal B, Pavani G, et al. Robust segmentation of vascular network using deeply cascaded AReN-UNet. Biomed Signal Proces, 2021, 69: 102953. |
52. | Ibtehaz N, Rahman M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 2020, 121: 74-87. |
53. | Zhuang J. LadderNet: multi-path networks based on U-Net for medical image segmentation (2019-8-28) [2021-11-04]. https://arxiv.org/pdf/1810.07810.pdf. |
54. | Yuan Hongfang, Liu Zhenhong, Shao Yajun, et al. ResD-Unet research and application for pulmonary artery segmentation. IEEE Access, 2021, 9: 67504-67511. |
55. | Shuvo B, Rifat A, Reza S, et al. CNL-UNet: a novel lightweight deep learning architecture for multimodal biomedical image segmentation with false output suppression. Biomed Signal Proces, 2021, 70: 102959. |
56. | Wang Guangjie, Liu Hui, Yi Xianpeng. ARMS net: overlapping chromosome segmentation based on adaptive receptive field multi-scale network. Biomed Signal Proces, 2021, 68: 102811. |
57. | Yu Shuangang, Xiao Di, Frost S, et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imag Grap, 2019, 74: 61-71. |
58. | Hari R, Kalyan C, Sergey D. Automatic and accurate abnormality detection from brain MR images using a novel hybrid unetresnext-50 deep CNN model. Biomed Signal Proces, 2021, 66: 102477. |
59. | Lee S, Makiko N, Hidetoshi U. Mu-net: multi-scale U-net for two-photon microscopy image denoising and restoration. Neural Networks, 2020, 125: 92-103. |
60. | Cui Hengfei, Chang Yuwen, Jiang Lei, et al. Multiscale attention guided U-Net architecture for cardiac segmentation in short-axis MRI images. Comput Meth Prog Bio, 2021, 206(1): 106142. |
61. | Li Feiyan, Li Weisheng, Qin Sheng, et al. MDFA-Net: multiscale dual-path feature aggregation network for cardiac segmentation on multi-sequence cardiac MR. Knowl Based Syst, 2021, 215(10): 106776. |
62. | Sarker M, Hatem R, Farhan A, et al. SLSNet: skin lesion segmentation using a lightweight generative adversarial network. Expert Syst Appl, 2021, 183: 115433. |
63. | Kose K, Bozkurt A, Fox C, et al. Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network. Med Image Anal, 2021, 67: 101841. |
64. | Almasni M, Kim D. CMM-Net: contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep, 2021, 11: 10191. |
65. | Wang Dan, Hu Guoqing, Lyu C. Multi-Path connected network for medical image segmentation. J Vis Commun Image Rep, 2020, 71: 102852. |
66. | Lan Meng, Zhang Yipeng, Zhang Lefei, et al. Global context based automatic road segmentation via dilated convolutional neural network. Inform Sciences, 2020, 535: 156-171. |
67. | Chen L C, Yang Yi, Wang Jiang, et al. Attention to scale: Scale-aware semantic image segmentation// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 3640-3649. |
68. | Chen L C, Barron J, George P, et al. Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 4545-4554. |
69. | Mei Haochen, Lei Wenhui, Gu Ran, et al. Automatic segmentation of gross target volume of nasopharynx cancer using ensemble of multiscale deep neural networks with spatial attention. Neurocomputing, 2021, 438: 211-222. |
70. | Coupe P, Boris M, Michael C, et al. AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage, 2020, 219: 117026. |
71. | Li Qianwen, Jia Weikuan, Sun Meili, et al. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment. Comput and Electron Agr, 2021, 180(6): 105900. |
72. | Lei Baiying, Xia Zaiming, Jiang Feng, et al. Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal, 2020, 64: 101716. |
73. | Fisher Y, Vladlen K, Schemmel J. Towards the second generation brainscales system (2015-11-23) [2021-11-04]. https://arxiv.org/pdf/1511.07122v1.pdf. |
74. | Xu Guoping, Cao Hanqiang, Udpa J, et al. DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images. Comput Med Imag and Grap, 2020, 88: 101851. |
75. | Li Jingcong, Zhu Liangyu, Gu Zhenghui, et al. Dilated-inception Net: Multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Trans Biomed Eng, 2019, 66(12): 3499-3508. |
76. | Chen Kuanbing, Xuan Y, Lin A, et al. Lung computed tomography image segmentation based on U-Net network fused with dilated convolution. Comput Meth and Prog Bio, 2021, 207: 106170. |
77. | Feng Ting, Wang Chuansheng, Chen Xinwei, et al. URNet: A U-Net based residual network for image dehazing. Appl Soft Comput, 2020, 102(12): 106884. |
78. | Hu Xuegang, Wang Haibo. Efficient fast semantic segmentation using continuous shuffle dilated convolutions. IEEE Access, 2020, 8: 70913-70924. |
79. | Fang Yuchun, Li Yifan, Tu Xiaokang, et al. Face completion with Hybrid Dilated Convolution. Signal Process Image, 2019, 80: 115664. |
80. | Rad R M, Saeedi P, Au J, et al. Multi-resolutional ensemble of stacked dilated U-Net for inner cell mass segmentation in human embryonic images// 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 3518-3522. |
81. | Ge Ruiquan, Cai Huihuang, Yuan Xin, et al. MD-UNET: Multi-input dilated U-shape neural network for segmentation of bladder cancer. Comput Biol Chem, 2021, 93: 107510. |
82. | Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention. Comput Sci, 2015, 37: 2048-2057. |
83. | Lan Yancheng, Zhang Xuming. Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access, 2020, 8: 195327-195340. |
84. | Guo Changlu, Szemenyei M, Yi Yugen, et al. SA-UNet: Spatial attention U-Net for retinal vessel segmentation// 2020 25th International Conference on Pattern Recognition (ICPR). Milan: IEEE, 2021: 1236-1242. |
85. | Gu Ran, Wang Guotai, Huang Rui, et al. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans Med Imaging, 2021, 40(2): 699-711. |
86. | Pang Shutao, Du Aanan, Orgun M, et al. Tumor attention networks: Better feature selection, better tumor segmentation. Neural Networks, 2021, 140: 203-222. |
87. | Ding Xiaofeng, Peng Yaxin, Shen Chaomin, et al. CAB U-Net: An end-to-end Category Attention Boosting algorithm for segmentation. Comput Med Imag Grap, 2020, 84(5): 101764. |
88. | Jin Qiangguo, Meng Zhaopeng, Sun Changming, et al. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front Bioeng Biote, 2020, 8: 605132. |
89. | Liu Liangliang, Kurgan L, Wu Fangxiang, et al. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Med Image Anal, 2020, 65: 101791. |
90. | Ashish V, Noam S, Niki P, et al. Attention is all you need// 2017 NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010. |
91. | Chen Liyang, You Zhiyuan, Zhang Nian, et al. UTRAD: Anomaly detection and localization with U-Transformer. Neural Networks, 2022, 147: 53-62. |
92. | Li Yang, Yang Jun, Ni Jiajia, et al. TA-Net: Triple attention network for medical image segmentation. Comput Biol Med, 2021, 137: 104836. |
93. | Wu Huisi, Chen Shihuai, Chen Guilian, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Med Image Anal, 2022, 76: 102327. |
94. | Wang Meng, Zhu Weifang, Shi Fei, et al. MsTGANet: Automatic drusen segmentation from retinal OCT images. IEEE Trans Med Imaging, 2022, 41(2): 394-406. |
95. | Zhang Yong, Zhang Zhao, Zhang Yu, et al. Human activity recognition based on motion sensor using U-Net. IEEE Access, 2019, 7: 75213-75226. |
96. | Zeng Tao, Diao Changyu, Lu Dongming. U-Net-based multispectral image generation from an RGB image. IEEE Access, 2021, 9: 43387-43396. |
97. | Shi Jie, Wu Kunpeng, Yang Chaolin, et al. A method of steel bar image segmentation based on multi-attention U-Net. IEEE Access, 2021, 9: 13304-13313. |
98. | Wang Benfeng, Li Jiakuo, Luo Jingrui, et al. Intelligent deblending of seismic data based on U-Net and transfer learning. IEEE Trans Geosci Remote, 2021, 59(10): 8885-8894. |
99. | Tan Zelin, Bai Jing, Zhang Shaomin, et al. NL-VTON: a non-local virtual try-on network with feature preserving of body and clothes. Sci Rep, 2021, 11(1): 19950. |
- 1. Shichung L, Shyhliang L, Jyhshysn L, et al. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging, 1995, 14(4): 711-718.
- 2. LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324.
- 3. Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Commun Acm, 2017, 60(6): 84-90.
- 4. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-assisted Intervention. Munich: Springer Lncs, 2015: 234-241.
- 5. Liu Liangliang, Cheng Jianhong, Quan Quan, et al. A survey on u-shaped networks in medical image segmentations. Neurocomputing, 2020, 409: 244-258.
- 6. Milletari F, Navab N, Ahmadi S, et al. V-Net: fully convolutional ceural networks for volumetric medical image segmentation// 2016 Fourth International Conference on 3D Vision. Stanford: 3DV, 2016: 565-571.
- 7. Zhou Z, Md S, Nima T, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging, 2020, 39(6): 1856-1867.
- 8. Oktay O, Schlemper J, Loic L F, et al. Attention U-Net: learning where to Look for the Pancreas (2018-5-30) [2021-11-04]. https://arxiv.org/pdf/1804.03999.pdf.
- 9. Ma Hao, Zou Yanni, Liu P. MHSU-net: a more versatile neural network for medical image segmentation. Comput Meth Prog Bio, 2021, 208(2): 106230.
- 10. Peng Dunlu, Xiong Shiyong, Peng Wenjia, et al. LCP-net: a local context-perception deep neural network for medical image segmentation. Expert Syst Appl, 2021, 168: 114234.
- 11. Chen Cheng, Liu Bo, Zhou Kangneng, et al. CSR-net: cross-scale residual network for multi-objective scaphoid fracture segmentation, Comput Biol Med, 2021, 137: 104776.
- 12. 周涛, 董雅丽, 霍兵强, 等. U-Net网络医学图像分割应用综述. 中国图象图形学报, 2021, 26(9): 2058-2077.
- 13. Cicek O, Abdulkadir A, Abdulkadir A, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation// Medical Image Computing and Computer-assisted Intervention. Athens: Springer Cham, 2016, 9901: 424-432.
- 14. Kumar A, Neha U, Ghosal P, et al. CSNet: A new DeepNet framework for ischemic stroke lesion segmentation. Comput Meth Prog Bio, 2020, 193: 105524.
- 15. Wang Y, Zhao Z, Syh B. CLCU-Net: cross-level connected U-shaped network with selective feature aggregation attention module for brain tumor segmentation. Comput Meth Prog Bio, 2021, 207: 106154.
- 16. Zhou Tao, Dong Yali, Lu Huiling, et al. APU-Net: an attention mechanism parallel U-Net for lung tumor segmentation. Biomed Res Int, 2022, 2022: 5303651.
- 17. Zhao Junting, Dang Meng, Chen Zhihao, et al. DSU-Net: distraction-sensitive U-Net for 3D lung tumor segmentation. Eng Appl Artif Intel, 2022, 109: 104649.
- 18. Xie Xiwang, Zhang Weidong, Wang Huadeng, et al. Dynamic adaptive residual network for liver CT image segmentation. Comput Electr Eng, 2021, 91: 107024.
- 19. Jiang Huiyan, Shi Tianyu, Bai Zhiqi, et al. AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in ct volumes. IEEE Access, 2019, 7: 24898-24909.
- 20. Belh K, Naima K, Nabil M, et al. Breast cancer: one-stage automated detection, segmentation, and classification of digital mammograms using unet model based-semantic segmentation. Biomed Signal Proces, 2021, 66: 102481.
- 21. Zhang Xiaoxuan, Zhu Xiongfeng, Tang Kai, et al. DDTNet: a dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer. Med Image Anal, 2022, 78: 102415.
- 22. Zhou Tao, Ye Xinyu, Lu Huilin, et al. Dense Convolutional Network and its application in medical image analysis. Biomed Res Int, 2022, 2022: 2384830.
- 23. Xu Jiangtao, Lu Kaige, Shi xingping, et al. DenseUnet generative adversarial network for near-infrared face image colorization. Signal Process, 2021, 183: 108007.
- 24. Huang Gao, Liu Zhuang, Maaten L V, et al. Densely Connected Convolutional Networks// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269.
- 25. Li Chen, Tan Yusong, Chen Wei, et al. ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation. Comput Graph, 2020, 90: 11-20.
- 26. Tang Pin, Zu Chen, Hong Mei, et al. DA-DSUnet: dual attention-based dense SU-NET for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing, 2021, 435: 103-113.
- 27. Manal G, Mohamed A, Fernando C. DU-Net: Convolutional network for the detection of arterial calcifications in mammograms. IEEE Trans Med Imaging, 2020, 39(10): 3240-3249.
- 28. Luo Zhongming, Zhang Yu, Zhou Lei. Micro-vessel image segmentation based on the AD-UNet model. IEEE Access, 2019, 7: 143402-143411.
- 29. Ke Liangru, Deng Yishu, Xia Weixiong, et al. Development of a self-constrained 3D denseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol, 2020, 110: 104862.
- 30. Nasser A, Amr A, AbdAllah E, et al. Efficient 3D deep learning model for medical image semantic segmentation. Alex Eng J, 2021, 60(1): 1231-1239.
- 31. Zhang Ziang, Wu Chendong, Sonya C, et al. DENSE-INception U-net for medical image segmentation. Comput Meth Prog Bio, 2020, 192: 105395.
- 32. Zhang Jinhua, Li Chen, Kosov S. LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation. Pattern Recogn, 2021, 115(4): 107885.
- 33. Jose D, Christian D, Ismail B. IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet. Lect Note Comput Sci, 2019, 11397: 130-143.
- 34. Zhang Jiawei, Jin Yuzhen, Xu Jilan, et al. MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation (2018-12-4) [2021-11-04]. https: //arxiv.org/pdf/1812.00352.pdf.
- 35. Wang E, Chen C, Ahmad A, et al. A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain. Future Gener Comp Sy, 2020, 108: 135-144.
- 36. Shi Jiali, Zhang Rong, Guo Lijun, et al. Dual dense context-aware network for hippocampal segmentation. Biomed Signal Proces, 2020, 61(6): 102038.
- 37. Mohammad Y, Philippe J, Farida C. Dense-Unet: a light model for lung fields segmentation in chest X-ray images// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 1242-1245.
- 38. He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
- 39. Liu Jin, Kang Yanqin, Qiang Jun, et al. Low-dose CT imaging via cascaded ResUnet with spectrum loss. Methods, 2021, 202: 78-87.
- 40. 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用: 研究进展与挑战. 电子与信息学报, 2022, 44(1): 149-167.
- 41. Lu Lin, Jian Liqiong, Luo Jun, et al. Pancreatic segmentation via ringed residual U-Net. IEEE Access, 2019, 7: 172871-172878.
- 42. Gu Zaiwang, Cheng Jun, Fu Huazhu, et al. CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans Med Imaging, 2019, 38(10): 2281-2292.
- 43. Hu Shunbo, Zhang Lintao, Li Guoqiang, et al. Brain deformable registration using global and local label-driven deep regression learning in the first year of life. IEEE Access, 2020, 8: 25691-25705.
- 44. Feng Ting, Wang Chuansheng, Chen Xinwei, et al. URNet: a U-Net based residual network for image dehazing. Appl Soft Comput, 2021, 102: 106884.
- 45. Liu S, Li Yuemei, Zhou Jingjing, et al. Segmenting nailfold capillaries using an improved U-Net network. Microvasc Res, 2020, 130: 104011.
- 46. Wang Zekun, Zou Yanni, Liu P. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput Biol Med, 2021, 134(12): 104449.
- 47. Waldner F, Diakogiannis F. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network ScienceDirect. Remote Sens Environ, 2020, 245: 111741.
- 48. Albert C, Sergi V, Jose B, et al. Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput Meth Prog Bio, 2020, 194: 105521.
- 49. Cao Zheng, Yu Bohan, Lei Biwen, et al. Cascaded SE-ResUnet for segmentation of thoracic organs at risk. Neurocomputing, 2021, 453: 357-368.
- 50. Alom Z, Chris Y, Tarek T, et al. Nuclei segmentation with recurrent residual convolutional neural networks based U-Net (R2U-Net)// NAECON 2018 IEEE National Aerospace and Electronics Conference. Dayton: IEEE, 2018: 228-233.
- 51. Aamer A, Biswal B, Pavani G, et al. Robust segmentation of vascular network using deeply cascaded AReN-UNet. Biomed Signal Proces, 2021, 69: 102953.
- 52. Ibtehaz N, Rahman M S. MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 2020, 121: 74-87.
- 53. Zhuang J. LadderNet: multi-path networks based on U-Net for medical image segmentation (2019-8-28) [2021-11-04]. https://arxiv.org/pdf/1810.07810.pdf.
- 54. Yuan Hongfang, Liu Zhenhong, Shao Yajun, et al. ResD-Unet research and application for pulmonary artery segmentation. IEEE Access, 2021, 9: 67504-67511.
- 55. Shuvo B, Rifat A, Reza S, et al. CNL-UNet: a novel lightweight deep learning architecture for multimodal biomedical image segmentation with false output suppression. Biomed Signal Proces, 2021, 70: 102959.
- 56. Wang Guangjie, Liu Hui, Yi Xianpeng. ARMS net: overlapping chromosome segmentation based on adaptive receptive field multi-scale network. Biomed Signal Proces, 2021, 68: 102811.
- 57. Yu Shuangang, Xiao Di, Frost S, et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imag Grap, 2019, 74: 61-71.
- 58. Hari R, Kalyan C, Sergey D. Automatic and accurate abnormality detection from brain MR images using a novel hybrid unetresnext-50 deep CNN model. Biomed Signal Proces, 2021, 66: 102477.
- 59. Lee S, Makiko N, Hidetoshi U. Mu-net: multi-scale U-net for two-photon microscopy image denoising and restoration. Neural Networks, 2020, 125: 92-103.
- 60. Cui Hengfei, Chang Yuwen, Jiang Lei, et al. Multiscale attention guided U-Net architecture for cardiac segmentation in short-axis MRI images. Comput Meth Prog Bio, 2021, 206(1): 106142.
- 61. Li Feiyan, Li Weisheng, Qin Sheng, et al. MDFA-Net: multiscale dual-path feature aggregation network for cardiac segmentation on multi-sequence cardiac MR. Knowl Based Syst, 2021, 215(10): 106776.
- 62. Sarker M, Hatem R, Farhan A, et al. SLSNet: skin lesion segmentation using a lightweight generative adversarial network. Expert Syst Appl, 2021, 183: 115433.
- 63. Kose K, Bozkurt A, Fox C, et al. Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network. Med Image Anal, 2021, 67: 101841.
- 64. Almasni M, Kim D. CMM-Net: contextual multi-scale multi-level network for efficient biomedical image segmentation. Sci Rep, 2021, 11: 10191.
- 65. Wang Dan, Hu Guoqing, Lyu C. Multi-Path connected network for medical image segmentation. J Vis Commun Image Rep, 2020, 71: 102852.
- 66. Lan Meng, Zhang Yipeng, Zhang Lefei, et al. Global context based automatic road segmentation via dilated convolutional neural network. Inform Sciences, 2020, 535: 156-171.
- 67. Chen L C, Yang Yi, Wang Jiang, et al. Attention to scale: Scale-aware semantic image segmentation// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 3640-3649.
- 68. Chen L C, Barron J, George P, et al. Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 4545-4554.
- 69. Mei Haochen, Lei Wenhui, Gu Ran, et al. Automatic segmentation of gross target volume of nasopharynx cancer using ensemble of multiscale deep neural networks with spatial attention. Neurocomputing, 2021, 438: 211-222.
- 70. Coupe P, Boris M, Michael C, et al. AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage, 2020, 219: 117026.
- 71. Li Qianwen, Jia Weikuan, Sun Meili, et al. A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment. Comput and Electron Agr, 2021, 180(6): 105900.
- 72. Lei Baiying, Xia Zaiming, Jiang Feng, et al. Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal, 2020, 64: 101716.
- 73. Fisher Y, Vladlen K, Schemmel J. Towards the second generation brainscales system (2015-11-23) [2021-11-04]. https://arxiv.org/pdf/1511.07122v1.pdf.
- 74. Xu Guoping, Cao Hanqiang, Udpa J, et al. DiSegNet: A deep dilated convolutional encoder-decoder architecture for lymph node segmentation on PET/CT images. Comput Med Imag and Grap, 2020, 88: 101851.
- 75. Li Jingcong, Zhu Liangyu, Gu Zhenghui, et al. Dilated-inception Net: Multi-scale feature aggregation for cardiac right ventricle segmentation. IEEE Trans Biomed Eng, 2019, 66(12): 3499-3508.
- 76. Chen Kuanbing, Xuan Y, Lin A, et al. Lung computed tomography image segmentation based on U-Net network fused with dilated convolution. Comput Meth and Prog Bio, 2021, 207: 106170.
- 77. Feng Ting, Wang Chuansheng, Chen Xinwei, et al. URNet: A U-Net based residual network for image dehazing. Appl Soft Comput, 2020, 102(12): 106884.
- 78. Hu Xuegang, Wang Haibo. Efficient fast semantic segmentation using continuous shuffle dilated convolutions. IEEE Access, 2020, 8: 70913-70924.
- 79. Fang Yuchun, Li Yifan, Tu Xiaokang, et al. Face completion with Hybrid Dilated Convolution. Signal Process Image, 2019, 80: 115664.
- 80. Rad R M, Saeedi P, Au J, et al. Multi-resolutional ensemble of stacked dilated U-Net for inner cell mass segmentation in human embryonic images// 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 3518-3522.
- 81. Ge Ruiquan, Cai Huihuang, Yuan Xin, et al. MD-UNET: Multi-input dilated U-shape neural network for segmentation of bladder cancer. Comput Biol Chem, 2021, 93: 107510.
- 82. Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention. Comput Sci, 2015, 37: 2048-2057.
- 83. Lan Yancheng, Zhang Xuming. Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access, 2020, 8: 195327-195340.
- 84. Guo Changlu, Szemenyei M, Yi Yugen, et al. SA-UNet: Spatial attention U-Net for retinal vessel segmentation// 2020 25th International Conference on Pattern Recognition (ICPR). Milan: IEEE, 2021: 1236-1242.
- 85. Gu Ran, Wang Guotai, Huang Rui, et al. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans Med Imaging, 2021, 40(2): 699-711.
- 86. Pang Shutao, Du Aanan, Orgun M, et al. Tumor attention networks: Better feature selection, better tumor segmentation. Neural Networks, 2021, 140: 203-222.
- 87. Ding Xiaofeng, Peng Yaxin, Shen Chaomin, et al. CAB U-Net: An end-to-end Category Attention Boosting algorithm for segmentation. Comput Med Imag Grap, 2020, 84(5): 101764.
- 88. Jin Qiangguo, Meng Zhaopeng, Sun Changming, et al. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front Bioeng Biote, 2020, 8: 605132.
- 89. Liu Liangliang, Kurgan L, Wu Fangxiang, et al. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Med Image Anal, 2020, 65: 101791.
- 90. Ashish V, Noam S, Niki P, et al. Attention is all you need// 2017 NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000-6010.
- 91. Chen Liyang, You Zhiyuan, Zhang Nian, et al. UTRAD: Anomaly detection and localization with U-Transformer. Neural Networks, 2022, 147: 53-62.
- 92. Li Yang, Yang Jun, Ni Jiajia, et al. TA-Net: Triple attention network for medical image segmentation. Comput Biol Med, 2021, 137: 104836.
- 93. Wu Huisi, Chen Shihuai, Chen Guilian, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation. Med Image Anal, 2022, 76: 102327.
- 94. Wang Meng, Zhu Weifang, Shi Fei, et al. MsTGANet: Automatic drusen segmentation from retinal OCT images. IEEE Trans Med Imaging, 2022, 41(2): 394-406.
- 95. Zhang Yong, Zhang Zhao, Zhang Yu, et al. Human activity recognition based on motion sensor using U-Net. IEEE Access, 2019, 7: 75213-75226.
- 96. Zeng Tao, Diao Changyu, Lu Dongming. U-Net-based multispectral image generation from an RGB image. IEEE Access, 2021, 9: 43387-43396.
- 97. Shi Jie, Wu Kunpeng, Yang Chaolin, et al. A method of steel bar image segmentation based on multi-attention U-Net. IEEE Access, 2021, 9: 13304-13313.
- 98. Wang Benfeng, Li Jiakuo, Luo Jingrui, et al. Intelligent deblending of seismic data based on U-Net and transfer learning. IEEE Trans Geosci Remote, 2021, 59(10): 8885-8894.
- 99. Tan Zelin, Bai Jing, Zhang Shaomin, et al. NL-VTON: a non-local virtual try-on network with feature preserving of body and clothes. Sci Rep, 2021, 11(1): 19950.
-
Previous Article
Research progress on the application of novel sensing technologies for sleep-related breathing disorder monitoring at home -
Next Article
Research progress of effect of Tai Chi on cognitive function in the elderly based on neuroelectrophysiological techniques and brain imaging techniques