• 1. International Research Association on Emerging Automotive Safety Technology, Tianjin 300222, P. R. China;
  • 2. School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, P. R. China;
  • 3. Institute of Forensic Science, Ministry of Public Security, Beijing 100038, P. R. China;
  • 4. Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430010, P. R. China;
LI Haiyan, Email: lihaiyan@tust.edu.cn
Export PDF Favorites Scan Get Citation

The finite element method is a new method to study the mechanism of brain injury caused by blunt instruments. But it is not easy to be applied because of its technology barrier of time-consuming and strong professionalism. In this study, a rapid and quantitative evaluation method was investigated to analyze the craniocerebral injury induced by blunt sticks based on convolutional neural network and finite element method. The velocity curve of stick struck and the maximum principal strain of brain tissue (cerebrum, corpus callosum, cerebellum and brainstem) from the finite element simulation were used as the input and output parameters of the convolutional neural network The convolutional neural network was trained and optimized by using the 10-fold cross-validation method. The Mean Absolute Error (MAE), Mean Square Error (MSE), and Goodness of Fit (R2) of the finally selected convolutional neural network model for the prediction of the maximum principal strain of the cerebrum were 0.084, 0.014, and 0.92, respectively. The predicted results of the maximum principal strain of the corpus callosum were 0.062, 0.007, 0.90, respectively. The predicted results of the maximum principal strain of the cerebellum and brainstem were 0.075, 0.011, and 0.94, respectively. These results show that the research and development of the deep convolutional neural network can quickly and accurately assess the local brain injury caused by the sticks blow, and have important application value for understanding the quantitative evaluation and the brain injury caused by the sticks struck. At the same time, this technology improves the computational efficiency and can provide a basis reference for transforming the current acceleration-based brain injury research into a focus on local brain injury research.

Citation: LI Haiyan, LI Haifang, HE Guanglong, LIU Wengang, CUI Shihai, HE Lijuan, LU Wenle, PAN Jianyu, ZHOU Yiwu. Evaluation of brain injury caused by stick type blunt instruments based on convolutional neural network and finite element method. Journal of Biomedical Engineering, 2022, 39(2): 276-284. doi: 10.7507/1001-5515.202106087 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Phase amplitude coupling analysis of local field potentials in working memory of rats affected by transcranial magneto-acoustic-electrical stimulation
  • Next Article

    Automatic detection model of hypertrophic cardiomyopathy based on deep convolutional neural network