In order to conduct surface monitoring of the three-dimensional spine morphology of the human body in daily life, a spine morphology measuring method using "single camera, multi-view" to construct stereo vision is proposed. The images of the back of the human body with landmarks of spinous process are captured from multiple angles by moving a single camera, and based on the "Zhang Zhengyou calibration method" and the triangulation principle of binocular stereo vision, the spatial conversion matrices corresponding to each other between all images and the 3D coordinates of the landmarks are calculated. Then the spine evaluation angle used to evaluate the spine morphology is further calculated. The tests’ results showed that the spine evaluation angle error of this method is within ±3°, and the correlation between the results and the X-ray film Cobb angles is 0.871. The visual detection algorithm used in this paper is non-radioactive, and because only one camera is used in the measurement process and there is no need to pre-set the camera's shooting pose, the operation is simple. The research results of this article can be used in a mobile phone-based intelligent detection system, which will be suitable for the group survey of scoliosis in communities, schools, families and other occasions, as well as for the long-term follow-up of confirmed patients. This will provide a reference for doctors to diagnose the condition, predict the development trend of the condition, and formulate treatment plans.
Citation: ZHANG Jinghui, SHEN Linyong, SONG Wei, TAN Mengting, YANG Changwei. Three-dimensional spine morphology measuring technology for daily surface monitoring. Journal of Biomedical Engineering, 2020, 37(5): 809-817. doi: 10.7507/1001-5515.201910010 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved