• 1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, P.R.China;
  • 2. College of Medical Informatics, Chongqing Medical University, Chongqing 400016, P.R.China;
LI Xinke, Email: lxk@cqu.edu.cn
Export PDF Favorites Scan Get Citation

With the rapid improvement of the perception and computing capacity of mobile devices such as smart phones, human activity recognition using mobile devices as the carrier has been a new research hot-spot. The inertial information collected by the acceleration sensor in the smart mobile device is used for human activity recognition. Compared with the common computer vision recognition, it has the following advantages: convenience, low cost, and better reflection of the essence of human motion. Based on the WISDM data set collected by smart phones, the inertial navigation information and the deep learning algorithm-convolutional neural network (CNN) were adopted to build a human activity recognition model in this paper. The K nearest neighbor algorithm (KNN) and the random forest algorithm were compared with the CNN network in the recognition accuracy to evaluate the performance of the CNN network. The classification accuracy of CNN model reached 92.73%, which was much higher than KNN and random forest. Experimental results show that the CNN algorithm model can achieve more accurate human activity recognition and has broad application prospects in predicting and promoting human health.

Citation: LI Xinke, LIU Xinyu, LI Yongming, CAO Hailin, CHEN Yihang, LIN Yicheng, HUANG Xinxin. Human activity recognition based on the inertial information and convolutional neural network. Journal of Biomedical Engineering, 2020, 37(4): 596-601. doi: 10.7507/1001-5515.201905042 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Research on the effect of background music on spatial cognitive working memory based on cortical brain network
  • Next Article

    Bibliometric analysis on international cooperation of rehabilitation robots in China from 2000 to 2019