1. |
Seo S, Lee D W, Ahn J S, et al. Significant performance enhancement of polymer resins by bioinspired dynamic bonding. Adv Mater, 2017, 29(39). DOI: 10.1002/adma.201703026.
|
2. |
Priemel T, Degtyar E, Dean M N, et al. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat Commun, 2017, 8: 14539.
|
3. |
Rapp M V, Maier G P, Dobbs H A, et al. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces. J Am Chem Soc, 2016, 138(29): 9013-9016.
|
4. |
Zhao Yanhua, Wu Yang, Wang Liang, et al. Bio-inspired reversible underwater adhesive. Nat Commun, 2017, 8(1): 2218.
|
5. |
Lee H, Um D S, Lee Y, et al. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv Mater, 2016, 28(34): 7457-7465.
|
6. |
Chen Yingchu, Yang Hongta. Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano, 2017, 11(6): 5332-5338.
|
7. |
Baik S, Kim D W, Park Y, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature, 2017, 546(7658): 396-400.
|
8. |
Chen L, An H Z, Haghgooie R, et al. Flexible octopus-shaped hydrogel particles for specific cell capture. Small, 2016, 12(15): 2001-2008.
|
9. |
Went P T, Lugli A, Meier S, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol, 2004, 35(1): 122-128.
|
10. |
Dendukuri D, Pregibon D C, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater, 2006, 5(5): 365-369.
|
11. |
Dendukuri D, Gu S S, Pregibon D C, et al. Stop-flow lithography in a microfluidic device. Lab Chip, 2007, 7(7): 818-828.
|
12. |
Björnmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release, 2014, 190: 139-149.
|
13. |
Pregibon D C, Toner M, Doyle P S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science, 2007, 315(5817): 1393-1396.
|
14. |
Suh S K, Yuet K, Hwang D K, et al. Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J Am Chem Soc, 2012, 134(17): 7337-7343.
|
15. |
An H Z, Helgeson M E, Doyle P S. Nanoemulsion composite microgels for orthogonal encapsulation and release. Adv Mater, 2012, 24(28): 3838-3844, 3895.
|
16. |
Kwak M K, Jeong H E, Suh K Y. Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv Mater, 2011, 23(34): 3949-3953.
|
17. |
Baik S, Kim J, Lee H J, et al. Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3D microtips for underwater surface and hairy skin. Adv Sci, 2018, 5(8). DOI: 10.1002/advs.201800100.
|
18. |
Chang Wanyi, Wu You, Chung Y C. Facile fabrication of ordered nanostructures from protruding nanoballs to recessional nanosuckers via solvent treatment on covered nanosphere assembled monolayers. Nano Lett, 2014, 14(3): 1546-1550.
|
19. |
Campo A, Greiner C, Álvarez I, et al. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bioattachment devices. Advanced Materials, 2007, 19(15): 1973-1977.
|
20. |
Choi M K, Park O K, Choi C, et al. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv Healthc Mater, 2016, 5(1): 80-87.
|
21. |
Lee B P, Messersmith P B, Israelachvili J N, et al. Mussel-inspired adhesives and coatings. Annu Rev Mater Res, 2011, 41(1): 99-132.
|
22. |
Kord Forooshani P, Lee B P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem, 2017, 55(1): 9-33.
|
23. |
Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci U S A, 2006, 103(35): 12999-13003.
|
24. |
Yu Jing, Wei Wei, Menyo M S, et al. Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules, 2013, 14(4): 1072-1077.
|
25. |
Lu Qingye, Danner E, Waite J H, et al. Adhesion of mussel foot proteins to different substrate surfaces. Journal of the Royal Society Interface, 2013, 10(79): 20120759.
|
26. |
Li Shaochun, Chu Lina, Gong Xueqing, et al. Hydrogen bonding controls the dynamics of catechol adsorbed on a TiO2(110) surface. Science, 2010, 328(5980): 882-884.
|
27. |
Leng Chuan, Liu Yuwei, Jenkins C, et al. Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy. Langmuir, 2013, 29(22): 6659-6664.
|
28. |
McDowell L M, Burzio L A, Waite J H, et al. Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem, 1999, 274(29): 20293-20295.
|
29. |
Hedlund J, Andersson M, Fant C, et al. Change of colloidal and surface properties of Mytilus edulis foot protein 1 in the presence of an oxidation (NaIO4) or a complex-binding (Cu2+) agent. Biomacromolecules, 2009, 10(4): 845-849.
|
30. |
Burzio L A, Waite J H. Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry, 2000, 39(36): 11147-11153.
|
31. |
Fan Changjiang, Fu Jiayin, Zhu Wenzhen, et al. A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta Biomater, 2016, 33: 51-63.
|
32. |
Ji Yali, Ji Ting, Liang Kai, et al. Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality. J Mater Sci Mater Med, 2016, 27(2): 30.
|
33. |
Rose S, Prevoteau A, Elzière P, et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature, 2014, 505(7483): 382-385.
|
34. |
Pandey N, Hakamivala A, Xu Cancan, et al. Biodegradable nanoparticles enhanced adhesiveness of mussel-like hydrogels at tissue interface. Adv Healthc Mater, 2018, 7(7). DOI: 10.1002/adhm.201701069.
|
35. |
Xu Yiwen, Liang Kai, Ullah W, et al. Chitin nanocrystal enhanced wet adhesion performance of mussel-inspired citrate-based soft-tissue adhesive. Carbohydr Polym, 2018, 190: 324-330.
|
36. |
Kim H J, Yang B, Park T Y, et al. Complex coacervates based on recombinant mussel adhesive proteins: their characterization and applications. Soft Matter, 2017, 13(42): 7704-7716.
|
37. |
Pangon A, Saesoo S, Saengkrit N A, et al. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym, 2016, 144: 419-427.
|
38. |
Plat V D, Bootsma B T, Van Der Wielen N, et al. The role of tissue adhesives in esophageal surgery, a systematic review of literature. Int J Surg, 2017, 40: 163-168.
|
39. |
Hafner D, Ziegler L, Ichwan M, et al. Mussel-inspired polymer carpets: direct photografting of polymer brushes on polydopamine nanosheets for controlled cell adhesion. Advanced Materials, 2016, 28(7): 1489-1494.
|
40. |
Xu J, Strandman S, Zhu J X X, et al. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials, 2015, 37: 395-404.
|
41. |
Park H J, Jin Y, Shin J, et al. Catechol-functionalized hyaluronic acid hydrogels enhance angiogenesis and osteogenesis of human adipose-derived stem cells in critical tissue defects. Biomacromolecules, 2016, 17(6): 1939-1948.
|
42. |
牛睿. 光聚合仿生生物粘合剂的研究. 北京: 北京化工大学, 2011.
|
43. |
Yang S Y, O'Cearbhaill E D, Sisk G C, et al. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat Commun, 2013, 4(102(S1)): 1702.
|
44. |
Li Ang, Jia Yunfei, Sun Shengtong, et al. Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic-inorganic hybrid adhesive. ACS Appl Mater Interfaces, 2018, 10(12): 10471-10479.
|
45. |
Amjadi M, Turan M, Clementson C P, et al. Parallel microcracks based ultrasensitive and highly stretchable strain sensors. Acs Applied Materials & Interfaces, 2016, 8(8): 5618.
|
46. |
Gao W, Emaminejad S, Nyein H Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 2016, 529(7587): 509-514.
|
47. |
Mostafalu P, Akbari M, Alberti K A, et al. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsystems & Nanoengineering, 2016, 2: 16039.
|
48. |
Drotlef D M, Amjadi M, Yunusa M, et al. Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors[J]. Adv Mater, 2017, 29(28). DOI: 10.1002/adma.201701353.
|
49. |
Wang H, Giorgia P, Chengkuo L. Toward self‐powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Advanced Science, 2016, 3(9): 1500441.
|
50. |
Hennebert E, Wattiez R, Demeuldre M, et al. Sea star tenacity mediated by a protein that fragments, then aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6317.
|
51. |
Brennan M J, Kilbride B F, Wilker J J, et al. A bioinspired elastin-based protein for a cytocompatible underwater adhesive. Biomaterials, 2017, 124: 116-125.
|