• 1. College of Information System Engineering, Information Engineering University, Zhengzhou 450001, P.R.China;
  • 2. Department of Radiology, Henan General Hospital, Zhengzhou 450002, P.R.China;
GAO Fei, Email: gfflyfly@163.com
Export PDF Favorites Scan Get Citation

In order to solve the pathological grading of hepatocellular carcinomas (HCC) which depends on biopsy or surgical pathology invasively, a quantitative analysis method based on radiomics signature was proposed for pathological grading of HCC in non-contrast magnetic resonance imaging (MRI) images. The MRI images were integrated to predict clinical outcomes using 328 radiomics features, quantifying tumour image intensity, shape and text, which are extracted from lesion by manual segmentation. Least absolute shrinkage and selection operator (LASSO) were used to select the most-predictive radiomics features for the pathological grading. A radiomics signature, a clinical model, and a combined model were built. The association between the radiomics signature and HCC grading was explored. This quantitative analysis method was validated in 170 consecutive patients (training dataset: n = 125; validation dataset, n = 45), and cross-validation with receiver operating characteristic (ROC) analysis was performed and the area under the ROC curve (AUC) was employed as the prediction metric. Through the proposed method, AUC was 0.909 in training dataset and 0.800 in validation dataset, respectively. Overall, the prediction performances by radiomics features showed statistically significant correlations with pathological grading. The results showed that radiomics signature was developed to be a significant predictor for HCC pathological grading, which may serve as a noninvasive complementary tool for clinical doctors in determining the prognosis and therapeutic strategy for HCC.

Citation: GAO Fei, YAN Bin, ZENG Lei, WU Minghui, TAN Hongna, HAI Jinjin, NING Peigang, SHI Dapeng. Quantitative analysis of hepatocellular carcinomas pathological grading in non-contrast magnetic resonance images. Journal of Biomedical Engineering, 2019, 36(4): 581-589. doi: 10.7507/1001-5515.201803014 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    High quality reconstruction algorithm for cardiac magnetic resonance images based on multiscale low rank modeling
  • Next Article

    Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression