Attention deficit/hyperactivity disorder (ADHD) is a behavioral disorder syndrome found mainly in school-age population. At present, the diagnosis of ADHD mainly depends on the subjective methods, leading to the high rate of misdiagnosis and missed-diagnosis. To solve these problems, we proposed an algorithm for classifying ADHD objectively based on convolutional neural network. At first, preprocessing steps, including skull stripping, Gaussian kernel smoothing, et al., were applied to brain magnetic resonance imaging (MRI). Then, coarse segmentation was used for selecting the right caudate nucleus, left precuneus, and left superior frontal gyrus region. Finally, a 3 level convolutional neural network was used for classification. Experimental results showed that the proposed algorithm was capable of classifying ADHD and normal groups effectively, the classification accuracies obtained by the right caudate nucleus and the left precuneus brain regions were greater than the highest classification accuracy (62.52%) in the ADHD-200 competition, and among 3 brain regions in ADHD and the normal groups, the classification accuracy from the right caudate nucleus was the highest. It is well concluded that the method for classification of ADHD and normal groups proposed in this paper utilizing the coarse segmentation and deep learning is a useful method for the purpose. The classification accuracy of the proposed method is high, and the calculation is simple. And the method is able to extract the unobvious image features better, and can overcome the shortcomings of traditional methods of MRI brain area segmentation, which are time-consuming and highly complicate. The method provides an objective diagnosis approach for ADHD.
Citation: ZHULi, ZHANGLiying, HANYuntao, ZENGQuan, CHANGWeike. Study of attention deficit/hyperactivity disorder classification based on convolutional neural networks. Journal of Biomedical Engineering, 2017, 34(1): 99-105. doi: 10.7507/1001-5515.201606058 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
-
Previous Article
An improved algorithm for electrohysterogram envelope extraction