• College of Medical Informatics, Chongqing Medical University, Chongqing 400016, P.R.China;
HE Xiangqian, Email: hexiangqian@cqmu.edu.cn
Export PDF Favorites Scan Get Citation

Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e., mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.

Citation: LI Lingyu, XUE Jinxia, HE Xiangqian, ZHANG Sheng, FAN Chu. Assessment of skin aging grading based on computer vision. Journal of Biomedical Engineering, 2017, 34(3): 449-455. doi: 10.7507/1001-5515.201604042 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Application of γ imaging in chromatographic separation and protein molecular site density determination
  • Next Article

    Research development of real-time functional magnetic resonance imaging neuro-feedback technology based on brain network connectivity