This paper makes persuasive demonstrations on some problems about the human ear sound transmission principle in existing physiological textbooks and reference books, and puts forward the authors' view to make up for its literature. Exerting the knowledge of lever in physics and the acoustics theory, we come up with an equivalent simplified model of manubrium mallei which is to meet the requirements as the long arm of the lever. We also set up an equivalent simplified model of ossicular chain--a combination of levers of ossicular chain. We disassemble the model into two simple levers, and make full analysis and demonstration on them. Through the calculation and comparison of displacement amplitudes in both external auditory canal air and internal ear lymph, we may draw a conclusion that the key reason, which the sound displacement amplitude is to be decreased to adapt to the endurance limit of the basement membrane, is that the density and sound speed in lymph is much higher than those in the air.
Citation: ZHAOXiaoyan, QINRenjia. Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph. Journal of Biomedical Engineering, 2015, 32(2): 326-329. doi: 10.7507/1001-5515.20150060 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved