• 1. School of Science, Yanshan University, Qinhuangdao 066004, China;
  • 2. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
LIJing, Email: 01016888@sina.com
Export PDF Favorites Scan Get Citation

The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

Citation: LIJing, HONGWenxue. Feature Extraction for Breast Cancer Data Based on Geometric Algebra Theory and Feature Selection Using Differential Evolution. Journal of Biomedical Engineering, 2014, 31(6): 1218-1222,1228. doi: 10.7507/1001-5515.20140231 Copy

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved

  • Previous Article

    Research of the Late Positive Potential of Emotional Cognitive Reappraisal Electroencephalogram Signal Based on OVR-CSP
  • Next Article

    Research on Measuring the Velocity and Displacement of the Coxa and Knee Based on Video Image Processing