唐仕波,
Email: tangsb@mail.sysu.edu.cn
遗传和环境因素均参与糖尿病及其并发症的病理过程, 表观遗传调控在其中的作用也日渐明确。糖尿病及其并发症中的主要病理过程如高血糖、氧化应激、炎症等均会导致表观遗传调控的异常, 从而影响染色质结构和基因表达, 而这些染色质表观遗传修饰的持续存在和糖尿病相关的代谢记忆现象相联系。表现机制相关的药物和治疗手段的研发或将成为糖尿病及相关并发症靶向治疗的新方面。
Citation: 谢满云, 唐仕波. 表观遗传调控在糖尿病视网膜病变中的研究进展. Chinese Journal of Ocular Fundus Diseases, 2014, 30(2): 212-216. doi: 10.3760/cma.j.issn.1005-1015.2014.02.027 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Reddy MA, Natarajan R.Epigenetic mechanisms in diabetic vascular complications[J]. Cardiovasc Res, 2011, 90:421-429. |
2. | Dupont C, Armant DR, Brenner CA.Epigenetics:definition, mechanisms and clinical perspective[J].Semin Reprod Med, 2009, 27:351-357. |
3. | Véron N, Peters AH. Epigenetics:tet proteins in the limelight[J]. Nature, 2011, 473:293-294. |
4. | Bird A. Putting the DNA back into DNA methylation[J]. Nature genetics, 2011, 43:1050-1051. |
5. | Cheung P, Lau P.Epigenetic regulation by histone methylation and histone variants[J]. Mol Endocrinol, 2005, 19:563-573. |
6. | Trojer P, Reinberg D.Histone lysine demethylases and their impact on epigenetics[J].Cell, 2006, 125:213-217. |
7. | Jones RS. Epigenetics:reversing the 'irreversible'[J].Nature, 2007, 450:357-359. |
8. | Winter S, Fischle W.Epigenetic markers and their cross-talk[J].Essays Bio, 2010, 48:45-61. |
9. | Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing[J].Mutat Res, 2008, 659:40-48. |
10. | Rakyan VK, Beyan H, Down TA, et al.Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis[J/OL].PLoS Genet, 2011, 7:E1002300[2011-09-29].http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002300. |
11. | Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood[J].Hum Mol Genet, 2012, 21:371-383. |
12. | Kuroda A, Rauch TA, Todorov I, et al.Insulin gene expression is regulated by DNA methylation[J/OL].PloS one, 2009, 4:E6953[2009-11-09]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0006953. |
13. | Barres R, Zierath JR.DNA methylation in metabolic disorders[J].Am J Clin Nutr, 2011, 93:897-900. |
14. | Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion[J]. Diabetologia, 2008, 51:615-622. |
15. | Brons C, Jacobsen S, Nilsson E, et al. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner[J].J Clin Endocrinol Metab, 2010, 95:3048-3056. |
16. | Park JH, Stoffers DA, Nicholls RD, et al.Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J].J Clin Invest, 2008, 118:2316-2324. |
17. | Ling C, Poulsen P, Simonsson S, et al.Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle[J].J Clin Invest, 2007, 117:3427-3435. |
18. | Ronn T, Poulsen P, Hansson O, et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle[J].Diabetologia, 2008, 51:1159-1168. |
19. | Jiang MH, Fei J, Lan MS, et al. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential[J]. Diabetologia, 2008, 51:1525-1533. |
20. | Brennan EP, Ehrich M, O'Donovan H, et al. DNA methylation profiling in cell models of diabetic nephropathy[J]. Epigenetics, 2010, 5:396-401. |
21. | Sapienza C, Lee J, Powell J, et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy[J]. Epigenetics, 2011, 6:20-28. |
22. | M nkemann H, De Vriese AS, Blom HJ, et al.Early molecular events in the development of the diabetic cardiomyopathy[J]. Amino acids, 2002, 23:331-336. |
23. | van Straten EM, Bloks VW, Huijkman NC, et al.The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction[J].Am J Physiol Regul Integr Comp Physiol, 2010, 298:275-282. |
24. | Kulkarni SS, Salehzadeh F, Fritz T, et al.Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus[J]. Metabolism, 2012, 6:175-185. |
25. | Liu ZH, Chen LL, Deng XL, et al.Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in Type 2 diabetes[J].J Endocrinol Invest, 2012, 35:585-589. |
26. | Mosley AL, Ozcan S.The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose[J].J Bio Chem, 2004, 279:54241-54217. |
27. | Deering TG, Ogihara T, Trace AP, et al.Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes[J].Diabetes, 2009, 58:185-193. |
28. | Agherbi H, Gaussmann-Wenger A, Verthuy C, et al. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence[J/OL].PLoS One, 2009, 7:E5622[2009-05-20].http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005622. |
29. | Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes[J]. Mol Cell Biol, 2009, 29:1363-1374. |
30. | Li Y, Reddy MA, Miao F, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes:relevance to diabetes and inflammation[J].J Biol Chem, 2008, 283:26771-26781. |
31. | Miao F, Wu X, Zhang L, et al.Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes[J].J Biol Chem, 2007, 282:13854-13863. |
32. | Reddy MA, Villeneuve LM, Wang M, et al.Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice[J].Circ Res, 2008, 103:615-623. |
33. | Syreeni A, El-Osta A, Forsblom C, et al.Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes[J].Diabetes, 2011, 60:3073-3080. |
34. | El-Osta A, Brasacchio D, Yao D, et al.Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J].J Exp Med, 2008, 205:2409-2417. |
35. | Brasacchio D, Okabe J, Tikellis C, et al.Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail[J].Diabetes, 2009, 58:1229-1236. |
36. | Pirola L, Balcerczyk A, Tothill RW, et al.Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells[J].Genome Res, 2011, 21:1601-1615. |
37. | Chen S, Feng B, George B, et al.Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells[J].Am J Physiol Endocrinol Metab, 2010, 298:127-137. |
38. | Zhou S, Chen HZ, Wan YZ, et al.Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction[J].Circ Res, 2011, 109:639-648. |
39. | Sun G, Reddy MA, Yuan H, et al.Epigenetic histone methylation modulates fibrotic gene expression[J].J Am Soc Nephrol, 2010, 21:2069-2080. |
40. | Reddy MA, Natarajan R.Epigenetics in diabetic kidney disease[J].J Am Soc Nephrol, 2011, 22:2182-2185. |
41. | Singh GB, Sharma R, Khullar M.Epigenetics and diabetic cardiomyopathy[J].Diabetes Res Clin Pract, 2011, 94:14-21. |
42. | Pop-Busui R, Low PA, Waberski BH, et al.Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus:the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC)[J].Circulation, 2009, 119:2886-2893. |
43. | Siebel AL, Fernandez AZ, El-Osta A.Glycemic memory associated epigenetic changes[J].Biochem Pharmacol, 2010, 80:1853-1859. |
44. | Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J].Invest Ophthalmol Vis Sci, 2012, 53:4881-4888. |
45. | Zhong Q, Kowluru RA.Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy[J].Diabetes, 2011, 60:1304-1313. |
46. | Zhong Q, Kowluru RA.Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory:role of histone methylation[J].Invest Ophthalmol Vis Sci, 2013, 54:244-250. |
47. | Zhong Q, Kowluru RA.Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy[J].Diabetes, 2013, 62:2559-2568. |
48. | Zhong Q, Kowluru RA.Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J].J Cell Biochem, 2010, 110:1306-1313. |
49. | Perrone L, Devi TS, Hosoya K, et al.Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions[J]. J Cell Physiol, 2009, 221:262-272. |
50. | Xu B, Chiu J, Feng B, et al.PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes[J].Diabetes Metab Res Rev, 2008, 24:404-412. |
51. | Madsen-Bouterse SA, Kowluru RA.Oxidative stress and diabetic retinopathy:pathophysiological mechanisms and treatment perspectives[J].Rev Endocr Metab Disord, 2008, 9:315-327. |
52. | Zhang L, Chen B, Tang L.Metabolic memory:mechanisms and implications for diabetic retinopathy[J]. Diabetes Res Clin Pract, 2012, 96:286-293. |
53. | Wachsman JT. DNA methylation and the association between genetic and epigenetic changes:relation to carcinogenesis[J]. Mutat Res, 1997, 375:1-8. |
54. | Turk PW, Laayoun A, Smith SS, et al.DNA adduct 8-hydroxyl-2'-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase[J].Carcinogenesis, 1995, 16:1253-1255. |
55. | Christman JK, Sheikhnejad G, Marasco CJ, et al. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[J].Proc Nat Acad Sci U S A, 1995, 92:7347-7351. |
56. | Hurt EM, Thomas SB, Peng B, et al.Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines[J].Br J Cancer, 2007, 97:1116-1123. |
57. | Tada M, Yokosuka O, Fukai K, et al. Hypermethylation of NAD(P)H:quinone oxidoreductase 1(NQO1) gene in human hepatocellular carcinoma[J].J Hepatol, 2005, 42:511-519. |
58. | Tang J, Kern TS.Inflammation in diabetic retinopathy[J].Prog Retin Eye Res, 2011, 30:343-358. |
59. | Yoshida T, Kato J, Maekita T, et al. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis[J]. Gastric Cancer, 2013, 16:488-497. |
60. | Carraco G, Corvalan AH. Helicobacter pylori-induced chronic gastitis and assessing risks for gastric cancer[J/OL]. Gastroenterol Res Pract, 2013, 2013.E393015[2013-02-25]. http://www.hindawi.com/journals/grp/2013/393015/. |
61. | Hashimoto K, Oreffo RO, Gibson MB, et al.DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes[J].Arthritis Rheum, 2009, 60:3303-3313. |
62. | Shuto T, Furuta T, Oba M, et al.Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells[J].FASEB J, 2006, 20:782-784. |
63. | Takahashi K, Sugi Y, Hosono A, et al.Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis[J].J Immunol, 2009, 183:6522-6529. |
64. | Hahn MA, Hahn T, Lee DH, et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation[J].Cancer Res, 2008, 68:10280-10289. |
65. | Dje N'Guessan P, Riediger F, Vardarova K, et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells[J].Arterioscler Thromb Vasc Biol, 2009, 29:380-386. |
66. | El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2011, 63:168-179. |
67. | Ishii M, Wen H, Corsa CA, et al.Epigenetic regulation of the alternatively activated macrophage phenotype[J]. Blood, 2009, 114:3244-3254. |
68. | Aoi Y, Nakahama K, Morita I, et al. The involvement of DNA and histone methylation in the repression of IL-1beta-induced MCP-1 production by hypoxia[J].Biochem Biophys Res Commun, 2011, 414:252-258. |
69. | Perez-Perri JI, Acevedo JM, Wappner P.Epigenetics:new questions on the response to hypoxia[J]. Int J Mol Sci, 2011, 12:4705-4721. |
70. | Shahrzad S, Bertrand K, Minhas K, et al.Induction of DNA hypomethylation by tumor hypoxia[J]. Epigenetics, 2007, 2:119-125. |
71. | Watson JA, Watson CJ, McCann A, et al.Epigenetics, the epicenter of the hypoxic response[J]. Epigenetics, 2010, 5:293-296. |
72. | Yin H, Blanchard KL.DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms[J]. Blood, 2000, 95:111-119. |
73. | Stowell C, Wang L, Arbogast B, et al.Retinal proteomic changes under different ischemic conditions-implication of an epigenetic regulatory mechanism[J].Int J Physiol Pathophysiol Pharmacol, 2010, 2:148-160. |
- 1. Reddy MA, Natarajan R.Epigenetic mechanisms in diabetic vascular complications[J]. Cardiovasc Res, 2011, 90:421-429.
- 2. Dupont C, Armant DR, Brenner CA.Epigenetics:definition, mechanisms and clinical perspective[J].Semin Reprod Med, 2009, 27:351-357.
- 3. Véron N, Peters AH. Epigenetics:tet proteins in the limelight[J]. Nature, 2011, 473:293-294.
- 4. Bird A. Putting the DNA back into DNA methylation[J]. Nature genetics, 2011, 43:1050-1051.
- 5. Cheung P, Lau P.Epigenetic regulation by histone methylation and histone variants[J]. Mol Endocrinol, 2005, 19:563-573.
- 6. Trojer P, Reinberg D.Histone lysine demethylases and their impact on epigenetics[J].Cell, 2006, 125:213-217.
- 7. Jones RS. Epigenetics:reversing the 'irreversible'[J].Nature, 2007, 450:357-359.
- 8. Winter S, Fischle W.Epigenetic markers and their cross-talk[J].Essays Bio, 2010, 48:45-61.
- 9. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing[J].Mutat Res, 2008, 659:40-48.
- 10. Rakyan VK, Beyan H, Down TA, et al.Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis[J/OL].PLoS Genet, 2011, 7:E1002300[2011-09-29].http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002300.
- 11. Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood[J].Hum Mol Genet, 2012, 21:371-383.
- 12. Kuroda A, Rauch TA, Todorov I, et al.Insulin gene expression is regulated by DNA methylation[J/OL].PloS one, 2009, 4:E6953[2009-11-09]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0006953.
- 13. Barres R, Zierath JR.DNA methylation in metabolic disorders[J].Am J Clin Nutr, 2011, 93:897-900.
- 14. Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion[J]. Diabetologia, 2008, 51:615-622.
- 15. Brons C, Jacobsen S, Nilsson E, et al. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner[J].J Clin Endocrinol Metab, 2010, 95:3048-3056.
- 16. Park JH, Stoffers DA, Nicholls RD, et al.Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1[J].J Clin Invest, 2008, 118:2316-2324.
- 17. Ling C, Poulsen P, Simonsson S, et al.Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle[J].J Clin Invest, 2007, 117:3427-3435.
- 18. Ronn T, Poulsen P, Hansson O, et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle[J].Diabetologia, 2008, 51:1159-1168.
- 19. Jiang MH, Fei J, Lan MS, et al. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential[J]. Diabetologia, 2008, 51:1525-1533.
- 20. Brennan EP, Ehrich M, O'Donovan H, et al. DNA methylation profiling in cell models of diabetic nephropathy[J]. Epigenetics, 2010, 5:396-401.
- 21. Sapienza C, Lee J, Powell J, et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy[J]. Epigenetics, 2011, 6:20-28.
- 22. M nkemann H, De Vriese AS, Blom HJ, et al.Early molecular events in the development of the diabetic cardiomyopathy[J]. Amino acids, 2002, 23:331-336.
- 23. van Straten EM, Bloks VW, Huijkman NC, et al.The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction[J].Am J Physiol Regul Integr Comp Physiol, 2010, 298:275-282.
- 24. Kulkarni SS, Salehzadeh F, Fritz T, et al.Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus[J]. Metabolism, 2012, 6:175-185.
- 25. Liu ZH, Chen LL, Deng XL, et al.Methylation status of CpG sites in the MCP-1 promoter is correlated to serum MCP-1 in Type 2 diabetes[J].J Endocrinol Invest, 2012, 35:585-589.
- 26. Mosley AL, Ozcan S.The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose[J].J Bio Chem, 2004, 279:54241-54217.
- 27. Deering TG, Ogihara T, Trace AP, et al.Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes[J].Diabetes, 2009, 58:185-193.
- 28. Agherbi H, Gaussmann-Wenger A, Verthuy C, et al. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence[J/OL].PLoS One, 2009, 7:E5622[2009-05-20].http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005622.
- 29. Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes[J]. Mol Cell Biol, 2009, 29:1363-1374.
- 30. Li Y, Reddy MA, Miao F, et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes:relevance to diabetes and inflammation[J].J Biol Chem, 2008, 283:26771-26781.
- 31. Miao F, Wu X, Zhang L, et al.Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes[J].J Biol Chem, 2007, 282:13854-13863.
- 32. Reddy MA, Villeneuve LM, Wang M, et al.Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice[J].Circ Res, 2008, 103:615-623.
- 33. Syreeni A, El-Osta A, Forsblom C, et al.Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes[J].Diabetes, 2011, 60:3073-3080.
- 34. El-Osta A, Brasacchio D, Yao D, et al.Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia[J].J Exp Med, 2008, 205:2409-2417.
- 35. Brasacchio D, Okabe J, Tikellis C, et al.Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail[J].Diabetes, 2009, 58:1229-1236.
- 36. Pirola L, Balcerczyk A, Tothill RW, et al.Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells[J].Genome Res, 2011, 21:1601-1615.
- 37. Chen S, Feng B, George B, et al.Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells[J].Am J Physiol Endocrinol Metab, 2010, 298:127-137.
- 38. Zhou S, Chen HZ, Wan YZ, et al.Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction[J].Circ Res, 2011, 109:639-648.
- 39. Sun G, Reddy MA, Yuan H, et al.Epigenetic histone methylation modulates fibrotic gene expression[J].J Am Soc Nephrol, 2010, 21:2069-2080.
- 40. Reddy MA, Natarajan R.Epigenetics in diabetic kidney disease[J].J Am Soc Nephrol, 2011, 22:2182-2185.
- 41. Singh GB, Sharma R, Khullar M.Epigenetics and diabetic cardiomyopathy[J].Diabetes Res Clin Pract, 2011, 94:14-21.
- 42. Pop-Busui R, Low PA, Waberski BH, et al.Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus:the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC)[J].Circulation, 2009, 119:2886-2893.
- 43. Siebel AL, Fernandez AZ, El-Osta A.Glycemic memory associated epigenetic changes[J].Biochem Pharmacol, 2010, 80:1853-1859.
- 44. Tewari S, Zhong Q, Santos JM, et al. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J].Invest Ophthalmol Vis Sci, 2012, 53:4881-4888.
- 45. Zhong Q, Kowluru RA.Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy[J].Diabetes, 2011, 60:1304-1313.
- 46. Zhong Q, Kowluru RA.Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory:role of histone methylation[J].Invest Ophthalmol Vis Sci, 2013, 54:244-250.
- 47. Zhong Q, Kowluru RA.Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy[J].Diabetes, 2013, 62:2559-2568.
- 48. Zhong Q, Kowluru RA.Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J].J Cell Biochem, 2010, 110:1306-1313.
- 49. Perrone L, Devi TS, Hosoya K, et al.Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions[J]. J Cell Physiol, 2009, 221:262-272.
- 50. Xu B, Chiu J, Feng B, et al.PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes[J].Diabetes Metab Res Rev, 2008, 24:404-412.
- 51. Madsen-Bouterse SA, Kowluru RA.Oxidative stress and diabetic retinopathy:pathophysiological mechanisms and treatment perspectives[J].Rev Endocr Metab Disord, 2008, 9:315-327.
- 52. Zhang L, Chen B, Tang L.Metabolic memory:mechanisms and implications for diabetic retinopathy[J]. Diabetes Res Clin Pract, 2012, 96:286-293.
- 53. Wachsman JT. DNA methylation and the association between genetic and epigenetic changes:relation to carcinogenesis[J]. Mutat Res, 1997, 375:1-8.
- 54. Turk PW, Laayoun A, Smith SS, et al.DNA adduct 8-hydroxyl-2'-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase[J].Carcinogenesis, 1995, 16:1253-1255.
- 55. Christman JK, Sheikhnejad G, Marasco CJ, et al. 5-Methyl-2'-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation[J].Proc Nat Acad Sci U S A, 1995, 92:7347-7351.
- 56. Hurt EM, Thomas SB, Peng B, et al.Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines[J].Br J Cancer, 2007, 97:1116-1123.
- 57. Tada M, Yokosuka O, Fukai K, et al. Hypermethylation of NAD(P)H:quinone oxidoreductase 1(NQO1) gene in human hepatocellular carcinoma[J].J Hepatol, 2005, 42:511-519.
- 58. Tang J, Kern TS.Inflammation in diabetic retinopathy[J].Prog Retin Eye Res, 2011, 30:343-358.
- 59. Yoshida T, Kato J, Maekita T, et al. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis[J]. Gastric Cancer, 2013, 16:488-497.
- 60. Carraco G, Corvalan AH. Helicobacter pylori-induced chronic gastitis and assessing risks for gastric cancer[J/OL]. Gastroenterol Res Pract, 2013, 2013.E393015[2013-02-25]. http://www.hindawi.com/journals/grp/2013/393015/.
- 61. Hashimoto K, Oreffo RO, Gibson MB, et al.DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes[J].Arthritis Rheum, 2009, 60:3303-3313.
- 62. Shuto T, Furuta T, Oba M, et al.Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells[J].FASEB J, 2006, 20:782-784.
- 63. Takahashi K, Sugi Y, Hosono A, et al.Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis[J].J Immunol, 2009, 183:6522-6529.
- 64. Hahn MA, Hahn T, Lee DH, et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation[J].Cancer Res, 2008, 68:10280-10289.
- 65. Dje N'Guessan P, Riediger F, Vardarova K, et al. Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells[J].Arterioscler Thromb Vasc Biol, 2009, 29:380-386.
- 66. El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2011, 63:168-179.
- 67. Ishii M, Wen H, Corsa CA, et al.Epigenetic regulation of the alternatively activated macrophage phenotype[J]. Blood, 2009, 114:3244-3254.
- 68. Aoi Y, Nakahama K, Morita I, et al. The involvement of DNA and histone methylation in the repression of IL-1beta-induced MCP-1 production by hypoxia[J].Biochem Biophys Res Commun, 2011, 414:252-258.
- 69. Perez-Perri JI, Acevedo JM, Wappner P.Epigenetics:new questions on the response to hypoxia[J]. Int J Mol Sci, 2011, 12:4705-4721.
- 70. Shahrzad S, Bertrand K, Minhas K, et al.Induction of DNA hypomethylation by tumor hypoxia[J]. Epigenetics, 2007, 2:119-125.
- 71. Watson JA, Watson CJ, McCann A, et al.Epigenetics, the epicenter of the hypoxic response[J]. Epigenetics, 2010, 5:293-296.
- 72. Yin H, Blanchard KL.DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms[J]. Blood, 2000, 95:111-119.
- 73. Stowell C, Wang L, Arbogast B, et al.Retinal proteomic changes under different ischemic conditions-implication of an epigenetic regulatory mechanism[J].Int J Physiol Pathophysiol Pharmacol, 2010, 2:148-160.
-
Previous Article
糖尿病视网膜病变神经损伤的发病机制和保护防治研究进展 -
Next Article
调脂药治疗糖尿病视网膜病变的研究进展