- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 30000, China;
Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) is a condition characterized by episodes of apnea and hypopnea during sleep, with sleep snoring being the primary symptom. The association between OSAHS and ophthalmic diseases has long been recognized, and the potential pathogenic mechanisms have been widely investigated in recent years. It is currently believed that the alteration of inflammatory factors caused by OSAHS plays a key role, affecting vascular function and ultimately leading to the occurrence of diseases. Numerous studies have found a close relationship between OSAHS and the development of fundus diseases. Further research into the pathogenesis of OSAHS is needed in the future to enrich the conclusions regarding the relationship between OSAHS and eye diseases, with the aim of achieving prevention, treatment, and favorable prognosis for related eye conditions.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Mao Z, Zheng P, Zhu X, et al. Obstructive sleep apnea hypopnea syndrome and vascular lesions: an update on what we currently know[J]. Sleep Med, 2024, 119: 296-311. DOI: 10.1016/j.sleep.2024.05.010. |
2. | 苏小凤, 刘霖, 仲琳, 等. 中国阻塞性睡眠呼吸暂停综合征患病率的meta分析[J]. 中国循证医学杂志, 2021, 21(10): 1187-1194. DOI: 10.7507/1672-2531.202106103.Su XF, Liu L, Zhong L, et al. Prevalence of obstructive sleep apnea syndrome in China: a meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2021, 21(10): 1187-1194. DOI: 10.7507/1672-2531.202106103. |
3. | Mojon DS, Hess CW, Goldblum D, et al. High prevalence of glaucoma in patients with sleep apnea syndrome[J]. Ophthalmology, 1999, 106(5): 1009-1012. DOI: 10.1016/S0161-6420(99)00525-4. |
4. | Lee SSY, Nilagiri VK, Mackey DA. Sleep and eye disease: a review[J]. Clin Exp Ophthalmol, 2022, 50(3): 334-344. DOI: 10.1111/ceo.14071. |
5. | Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion[J]. Nat Rev Cancer, 2024, 24(10): 655-675. DOI: 10.1038/s41568-024-00736-0. |
6. | Harki O, Boete Q, Pépin JL, et al. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data[J/OL]. Eur Respir J, 2022, 59(3): 2100866[2022-03-17]. https://pubmed.ncbi.nlm.nih.gov/34413154/. DOI: 10.1183/13993003.00866-2021. |
7. | Wan W, Wu Z, Lu J, et al. Obstructive sleep apnea is related with the risk of retinal vein occlusion[J]. Nat Sci Sleep, 2021, 13: 273-281. DOI: 10.2147/NSS.S290583. |
8. | Guo S, Dong L, Li J, et al. C-X3-C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury[J]. Chronic Dis Transl Med, 2021, 7(4): 254-265. DOI: 10.1016/j.cdtm.2021.05.001. |
9. | Wang Y, Lee MYK, Mak JCW, et al. Low-frequency intermittent hypoxia suppresses subcutaneous adipogenesis and induces macrophage polarization in lean mice[J]. Diabetes Metab J, 2019, 43(5): 659-674. DOI: 10.4093/dmj.2018.0196. |
10. | Israel LP, Benharoch D, Gopas J, et al. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome[J]. Sleep, 2013, 36(12): 1947-1955. DOI: 10.5665/sleep.3236. |
11. | Müller MB, Stihl C, Schmid A, et al. A novel OSA-related model of intermittent hypoxia in endothelial cells under flow reveals pronounced inflammatory pathway activation[J/OL]. Front Physiol, 2023, 14: 1108966[2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37123277/. DOI: 10.3389/fphys.2023.1108966. |
12. | Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J/OL]. Front Immunol, 2021, 12: 716469[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434197/. DOI: 10.3389/fimmu.2021.716469. |
13. | Zeng X, Guo R, Dong M, et al. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression[J]. J Transl Med, 2018, 16(1): 106. DOI: 10.1186/s12967-018-1479-6. |
14. | Schaefer E, Wu W, Mark C, et al. Intermittent hypoxia is a proinflammatory stimulus resulting in IL-6 expression and M1 macrophage polarization[J]. Hepatol Commun, 2017, 1(4): 326-337. DOI: 10.1002/hep4.1045. |
15. | Ji L, Liu Y, Liu P, et al. Serum periostin and TNF-α levels in patients with obstructive sleep apnea-hypopnea syndrome[J]. Sleep Breath, 2021, 25(1): 331-337. DOI: 10.1007/s11325-020-02124-y. |
16. | Liu W, Zhang W, Wang T, et al. Obstructive sleep apnea syndrome promotes the progression of aortic dissection via a ROS- HIF-1α-MMP associated pathway[J]. Int J Biol Sci, 2019, 15(13): 2774-2782. DOI: 10.7150/ijbs.34888. |
17. | Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J/OL]. Int J Mol Sci, 2020, 21(24): 9739[2020-12-20]. https://pubmed.ncbi.nlm.nih.gov/33419373/. DOI: 10.3390/ijms21249739. |
18. | 刘远灵, 罗少华, 欧琼, 等. 阻塞性睡眠呼吸暂停低通气综合征患者外周血CD4+T细胞PD-1、CTLA-4表达及VEGF的变化研究[J]. 中华结核和呼吸杂志, 2019, 42(4): 268-274. DOI: 10.3760/cma.j.issn.1001-0939.2019.04.004.Liu YL, Luo SH, Ou Q, et al. The expressions of CTLA-4 and PD-1 on CD(4)(+) T cells and the level of plasma VEGF in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Tuberc Respir Dis, 2019, 42(4): 268-274. DOI: 10.3760/cma.j.issn.1001-0939.2019.04.004. |
19. | Harki O, Tamisier R, Pépin JL, et al. VE-cadherin cleavage in sleep apnoea: new insights into intermittent hypoxia-related endothelial permeability[J/OL]. Eur Respir J, 2021, 58(4): 2004518[2021-10-07]. https://pubmed.ncbi.nlm.nih.gov/33737411/. DOI: 10.1183/13993003.04518-2020. |
20. | Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9): 776. DOI: 10.1038/s41419-020-02985-x. |
21. | Yan YR, Zhang L, Lin YN, et al. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway[J]. Free Radic Biol Med, 2021, 165: 401-410. DOI: 10.1016/j.freeradbiomed.2021.01.053. |
22. | Chen J, Deng X, Lin T, et al. Ferrostatin-1 reversed chronic intermittent hypoxia-induced ferroptosis in aortic endothelial cells via reprogramming mitochondrial function[J]. Nat Sci Sleep, 2024, 16: 401-411. DOI: 10.2147/NSS.S442186. |
23. | Huang J, Zhang H, Cao L, et al. Ferroptosis-related genes are considered as potential targets for CPAP treatment of obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1320954[2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/38178888/. DOI: 10.3389/fneur.2023.1320954. |
24. | Yang YY, Shang J, Liu HG. Role of endoplasmic reticular stress in aortic endothelial apoptosis induced by intermittent/persistent hypoxia[J]. Chin Med J (Engl), 2013, 126(23): 4517-4523. DOI: 10.3760/cma.j.issn.0366-6999.20130602. |
25. | Toffoli S, Delaive E, Dieu M, et al. NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia[J]. Angiogenesis, 2009, 12(4): 339-354. DOI: 10.1007/s10456-009-9156-2. |
26. | Venkataraman S, Vungarala S, Covassin N, et al. Sleep apnea, hypertension and the sympathetic nervous system in the adult population[J]. J Clin Med, 2020, 9(2): 591. DOI: 10.3390/jcm9020591. |
27. | Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea[J]. J Clin Invest, 2020, 130(10): 5042-5051. DOI: 10.1172/JCI137560. |
28. | Moraes DJ, Zoccal DB, Machado BH. Medullary respiratory network drives sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia[J]. Hypertension, 2012, 60(6): 1374-1380. DOI: 10.1161/HYPERTENSIONAHA.111.189332. |
29. | King TL, Heesch CM, Clark CG, et al. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302(10): 1219-1332. DOI: 10.1152/ajpregu.00028.2012. |
30. | Somers VK, Dyken ME, Clary MP, et al. Sympathetic neural mechanisms in obstructive sleep apnea[J]. J Clin Invest, 1995, 96(4): 1897-1904. DOI: 10.1172/JCI118235. |
31. | Ip MS, Lam B, Chan LY, et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure[J]. Am J Respir Crit Care Med, 2000, 162(6): 2166-2171. DOI: 10.1164/ajrccm.162.6.2002126. |
32. | Mochol J, Gawryś J, Szahidewicz-Krupska E, et al. Effect of obstructive sleep apnea and CPAP treatment on the bioavailability of erythrocyte and plasma nitric oxide[J/OL]. Int J Environ Res Public Health, 2022, 19(22): 14719[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/36429438/. DOI: 10.3390/ijerph192214719. |
33. | Wu ZH, Tang Y, Niu X, et al. The role of nitric oxide (NO) levels in patients with obstructive sleep apnea-hypopnea syndrome: a meta-analysis[J]. Sleep Breath, 2021, 25(1): 9-16. DOI: 10.1007/s11325-020-02095-0. |
34. | Li JR, Zhao YS, Chang Y, et al. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway[J/OL]. PLoS One, 2018, 13(4): e0195604[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29641598/. DOI: 10.1371/journal.pone.0195604. |
35. | Dang-Thi-Mai K, Le-Dong NN, Le-Thuong V, et al. Exhaled nitric oxide as a surrogate marker for obstructive sleep apnea severity grading: an in-hospital population study[J]. Nat Sci Sleep, 2021, 13: 763-773. DOI: 10.2147/NSS.S307012. |
36. | Haight JS, Djupesland PG. Nitric oxide (NO) and obstructive sleep apnea (OSA)[J]. Sleep Breath, 2003, 7(2): 53-62. DOI: 10.1007/s11325-003-0053-4. |
37. | Teramoto S, Kume H, Matsuse T, et al. Oxygen administration improves the serum level of nitric oxide metabolites in patients with obstructive sleep apnea syndrome[J]. Sleep Med, 2003, 4(5): 403-407. DOI: 10.1016/s1389-9457(03)00102-3. |
38. | Walsh JT, Montplaisir J. Familial glaucoma with sleep apnoea: a new syndrome?[J]. Thorax, 1982, 37(11): 845-849. DOI: 10.1136/thx.37.11.845. |
39. | Karakucuk S, Goktas S, Aksu M, et al. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS)[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(1): 129-134. DOI: 10.1007/s00417-007-0656-8. |
40. | Cerquera Jaramillo MA, Moreno Mazo SE, Toquica Osorio JE. Primary open-angle glaucoma in patients with obstructive sleep apnoea in a Colombian population: a cross-sectional study[J/OL]. BMJ Open, 2023, 13(2): e063506[2023-02-22]. https://pubmed.ncbi.nlm.nih.gov/36813489/. DOI: 10.1136/bmjopen-2022-063506. |
41. | Najmanová E, Pluháček F, Botek M, et al. Intraocular pressure response to short-term extreme normobaric hypoxia exposure[J/OL]. Front Endocrinol (Lausanne), 2019, 9: 785[2019-01-07]. https://pubmed.ncbi.nlm.nih.gov/30666235/. DOI: 10.3389/fendo.2018.00785. |
42. | Chalkiadaki E, Andreanos K, Florou C, et al. Corneal endothelial morphology and thickness alterations in patients with severe obstructive sleep apnea-hypopnea syndrome[J]. Cornea, 2021, 40(1): 73-77. DOI: 10.1097/ICO.0000000000002373. |
43. | Muniesa MJ, Benítez I, Ezpeleta J, et al. Effect of CPAP therapy on 24-hour intraocular pressure-related pattern from contact lens sensors in obstructive sleep apnea syndrome[J]. Transl Vis Sci Technol, 2021, 10(4): 10. DOI: 10.1167/tvst.10.4.10. |
44. | Lee TE, Kim JS, Yeom SW, et al. Long-term effects of obstructive sleep apnea and its treatment on open-angle glaucoma: a big-data cohort study[J]. J Clin Sleep Med, 2023, 19(2): 339-346. DOI: 10.5664/jcsm.10334. |
45. | Bironneau V, Tamisier R, Trzepizur W, et al. Sleep apnoea and endothelial dysfunction: an individual patient data meta-analysis[J/OL]. Sleep Med Rev, 2020, 52: 101309[2020-03-13]. https://pubmed.ncbi.nlm.nih.gov/32234658/. DOI: 10.1016/j.smrv.2020.101309. |
46. | Erdem S, Yilmaz S, Karahan M, et al. Can dynamic and static pupillary responses be used as an indicator of autonomic dysfunction in patients with obstructive sleep apnea syndrome?[J]. Int Ophthalmol, 2021, 41(7): 2555-2563. DOI: 10.1007/s10792-021-01814-0. |
47. | Iannella G, Magliulo G, Greco A, et al. Obstructive sleep apnea syndrome: from symptoms to treatment[J/OL]. Int J Environ Res Public Health, 2022, 19(4): 2459[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35206645/. DOI: 10.3390/ijerph19042459. |
48. | Bonacci E, Fasolo A, Zaffanello M, et al. Early corneal and optic nerve changes in a paediatric population affected by obstructive sleep apnea syndrome[J]. Int Ophthalmol, 2022, 42(4): 1281-1287. DOI: 10.1007/s10792-021-02115-2. |
49. | Yu J, Xiao K, Huang J, et al. Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3506-3512. DOI: 10.1167/iovs.17-21414. |
50. | Cai Y, Sun GS, Zhao L, et al. Quantitative evaluation of retinal microvascular circulation in patients with obstructive sleep apnea-hypopnea using optical coherence tomography angiography[J]. Int Ophthalmol, 2020, 40(12): 3309-3321. DOI: 10.1007/s10792-020-01518-x. |
51. | Ucak T, Unver E. Alterations in parafoveal and optic disc vessel densities in patients with obstructive sleep apnea syndrome[J/OL]. J Ophthalmol, 2020, 2020: 4034382[2020-01-10]. https://pubmed.ncbi.nlm.nih.gov/32148941/. DOI: 10.1155/2020/4034382. |
52. | Altinel MG, Uslu H, Kanra AY, et al. Effect of obstructive sleep apnoea syndrome and continuous positive airway pressure treatment on choroidal structure[J]. Eye (Lond), 2022, 36(10): 1977-1981. DOI: 10.1038/s41433-021-01790-w. |
53. | Cai Y, Liu WB, Zhou M, et al. Diurnal changes of retinal microvascular circulation and RNFL thickness measured by optical coherence tomography angiography in patients with obstructive sleep apnea-hypopnea[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 947586[2022-08-09]. https://pubmed.ncbi.nlm.nih.gov/36017325/. DOI: 10.3389/fendo.2022.947586. |
54. | Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome[J]. Ophthalmologica, 2002, 216(3): 180-184. DOI: 10.1159/000059625. |
55. | Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma: pathogenesis and genetics[J]. Exp Ther Med, 2019, 17(1): 563-574. DOI: 10.3892/etm.2018.7011. |
56. | Dziewas R, Schilling M, Engel P, et al. Treatment for obstructive sleep apnoea: effect on peripheral nerve function[J]. J Neurol Neurosurg Psychiatry, 2007, 78(3): 295-297. DOI: 10.1136/jnnp.2006.102806. |
57. | Gutiérrez-Díaz E, Pérez-Rico C, de Atauri MJ, et al. Evaluation of the visual function in obstructive sleep apnea syndrome patients and normal-tension glaucoma by means of the multifocal visual evoked potentials[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(11): 1681-1688. DOI: 10.1007/s00417-012-1982-z. |
58. | Morrow MJ. Ischemic optic neuropathy[J]. Continuum (Minneap Minn), 2019, 25(5): 1215-1235. DOI: 10.1212/CON.0000000000000767. |
59. | Wu Y, Zhou LM, Lou H, et al. The association between obstructive sleep apnea and nonarteritic anterior ischemic optic neuropathy: a systematic review and meta-analysis[J]. Curr Eye Res, 2016, 41(7): 987-992. DOI: 10.3109/02713683.2015.1075221. |
60. | Bulloch G, Seth I, Zhu Z, et al. Ocular manifestations of obstructive sleep apnea: a systematic review and meta-analysis[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(1): 19-32. DOI: 10.1007/s00417-023-06103-3. |
61. | Sun MH, Lee CY, Liao YJ, et al. Nonarteritic anterior ischaemic optic neuropathy and its association with obstructive sleep apnoea: a health insurance database study[J/OL]. Acta Ophthalmol, 2019, 97(1): e64-e70[2018-08-31]. https://pubmed.ncbi.nlm.nih.gov/30171667/. DOI: 10.1111/aos.13832. |
62. | Madan S, Sethi M, Bajpai V, et al. Non-arteritic anterior ischaemic optic neuropathy and obstructive sleep apnoea[J]. Natl Med J India, 2023, 36(6): 364-367. DOI: 10.25259/NMJI_982_20. |
63. | Li X, Zhang Y, Guo T, et al. Influence of obstructive sleep apnea syndrome on the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy[J]. J Clin Sleep Med, 2023, 19(2): 347-353. DOI: 10.5664/jcsm.10342. |
64. | Aptel F, Khayi H, Pépin JL, et al. Association of nonarteritic ischemic optic neuropathy with obstructive sleep apnea syndrome: consequences for obstructive sleep apnea screening and Treatment[J]. JAMA Ophthalmol, 2015, 133(7): 797-804. DOI: 10.1001/jamaophthalmol.2015.0893. |
65. | Turnbull CD. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea[J]. J Thorac Dis, 2018, 10(Suppl 1): S33-39. DOI: 10.21037/jtd.2017.10.33. |
66. | Jelic S, Le Jemtel TH. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea[J]. Trends Cardiovasc Med, 2008, 18(7): 253-260. DOI: 10.1016/j.tcm.2008.11.008. |
67. | Remond P, Aptel F, Cunnac P, et al. Retinal vessel phenotype in patients with nonarteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2019, 208: 178-184. DOI: 10.1016/j.ajo.2019.04.007. |
68. | Naranjo-Bonilla P, Giménez-Gómez R, Muñoz-Villanueva MDC, et al. Retinal and choroidal effects of continuous positive airway pressure as treatment for sleep apnea: results at 12 months[J/OL]. Int J Environ Res Public Health, 2022, 19(19): 12637[2022-10-03]. https://pubmed.ncbi.nlm.nih.gov/36231937/. DOI: 10.3390/ijerph191912637. |
69. | 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 中国年龄相关性黄斑变性临床诊疗指南(2023年)[J]. 中华眼科杂志, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649.Chinese Vitreo-Retina Society of Chinese Medical Association, Fundus Disease Group of Chinese Ophthalmologist Association. Evidence-based guidelines for diagnosis and treatment of age-related macular degeneration in China (2023)[J]. Chin J Ophthalmol, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649. |
70. | Schaal S, Sherman MP, Nesmith B, et al. Untreated obstrutive sleep apnea hinders response to bevacizumab in age-related macular degeneration[J]. Retina, 2016, 36(4): 791-797. DOI: 10.1097/IAE.0000000000000981. |
71. | De Guia IL, Eslick S, Naismith SL, et al. The crosstalk between amyloid-β, retina, and sleep for the early diagnosis of Alzheimer's disease: a narrative review[J]. J Alzheimers Dis Rep, 2024, 8(1): 1009-1021. DOI: 10.3233/ADR-230150. |
72. | Fang WY, Rama Raj P, Wu Z, et al. Role of sleep-disordered breathing in age-related macular degeneration[J/OL]. BMJ Open Ophthalmol, 2023, 8(1): e001203[2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/37278414/. DOI: 10.1136/bmjophth-2022-001203. |
73. | Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31. DOI: 10.1038/s41572-021-00265-2. |
74. | Han X, Lee SS, Ingold N, et al. Associations of sleep apnoea with glaucoma and age-related macular degeneration: an analysis in the United Kingdom Biobank and the Canadian longitudinal study on aging[J]. BMC Med, 2021, 19(1): 104. DOI: 10.1186/s12916-021-01973-y. |
75. | Zhu RC, Li FF, Wu YQ, et al. Minimal effect of sleep on the risk of age-related macular degeneration: a Mendelian randomization study[J/OL]. Front Aging Neurosci, 2023, 15: 1159711[2023-08-21]. https://pubmed.ncbi.nlm.nih.gov/37671084/. DOI: 10.3389/fnagi.2023.1159711. |
76. | Shen X, Kong F, Wen J, et al. The role of inflammation in central serous chorioretinopathy: From mechanisms to therapeutic prospects[J/OL]. Front Pharmacol, 2024, 15: 1200492[2024-05-21]. https://pubmed.ncbi.nlm.nih.gov/38835666/. DOI: 10.3389/fphar.2024.1200492. |
77. | Chatziralli I, Kabanarou SA, Parikakis E, et al. Risk factors for central serous chorioretinopathy: multivariate approach in a case-control study[J]. Curr Eye Res, 2017, 42(7): 1069-1073. DOI: 10.1080/02713683.2016.1276196. |
78. | Wu CY, Riangwiwat T, Rattanawong P, et al. A systematic review and meta-analysis[J]. Retina, 2018, 38(9): 1642-1651. DOI: 10.1097/IAE.0000000000002117. |
79. | Liu PK, Chang YC, Tai MH, et al. The association between central serous chorioretinopathy and sleep apnea: a nationwide population-based study[J]. Retina, 2020, 40(10): 2034-2044. DOI: 10.1097/IAE.0000000000002702. |
80. | Yavaş GF, Küsbeci T, Kaşikci M, et al. Obstructive sleep apnea in patients with central serous chorioretinopathy[J]. Curr Eye Res, 2014, 39(1): 88-92. DOI: 10.3109/02713683.2013.824986. |
81. | 黎晓新. 《中国视网膜静脉阻塞临床诊疗路径专家共识》要点解读[J]. 中华眼底病杂志, 2024, 40(4): 264-267. DOI: 10.3760/cma.j.cn511434-20240320-00113.Li XX. Key points interpretation of Expert consensus on clinical diagnosis and treatment path of retinal vein occlusion in China[J]. Chin J Ocul Fundus Dis, 024, 40(4): 264-267. DOI: 10.3760/cma.j.cn511434-20240320-00113. |
82. | Leroux les Jardins G, Glacet-Bernard A, Lasry S, et al. Occlusion veineuse rétinienne et syndrome d'apnée du sommeil[J]. J Fr Ophtalmol, 2009, 32(6): 420-424. DOI: 10.1016/j.jfo.2009.04.012. |
83. | Govetto A, Domínguez R, Rojas L, et al. Bilateral and simultaneous central retinal vein occlusion in a patient with obstructive sleep apnea syndrome[J]. Case Rep Ophthalmol, 2014, 5(2): 150-156. DOI: 10.1159/000363132. |
84. | Trovato Battagliola E, Pacella F, Malvasi M, et al. Risk factors in central retinal vein occlusion: a multi-center case-control study conducted on the Italian population: demographic, environmental, systemic, and ocular factors that increase the risk for major thrombotic events in the retinal venous system[J]. Eur J Ophthalmol, 2022, 32(5): 2801-2809. DOI: 10.1177/11206721211064469. |
85. | Díaz DE Terán T, González P, González M, et al. Risk factors in developing retinal vein occlusion in subject with obstructive sleep apnea[J]. Minerva Med, 2023, 114(6): 825-831. DOI: 10.23736/S0026-4806.22.07989-7. |
- 1. Mao Z, Zheng P, Zhu X, et al. Obstructive sleep apnea hypopnea syndrome and vascular lesions: an update on what we currently know[J]. Sleep Med, 2024, 119: 296-311. DOI: 10.1016/j.sleep.2024.05.010.
- 2. 苏小凤, 刘霖, 仲琳, 等. 中国阻塞性睡眠呼吸暂停综合征患病率的meta分析[J]. 中国循证医学杂志, 2021, 21(10): 1187-1194. DOI: 10.7507/1672-2531.202106103.Su XF, Liu L, Zhong L, et al. Prevalence of obstructive sleep apnea syndrome in China: a meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2021, 21(10): 1187-1194. DOI: 10.7507/1672-2531.202106103.
- 3. Mojon DS, Hess CW, Goldblum D, et al. High prevalence of glaucoma in patients with sleep apnea syndrome[J]. Ophthalmology, 1999, 106(5): 1009-1012. DOI: 10.1016/S0161-6420(99)00525-4.
- 4. Lee SSY, Nilagiri VK, Mackey DA. Sleep and eye disease: a review[J]. Clin Exp Ophthalmol, 2022, 50(3): 334-344. DOI: 10.1111/ceo.14071.
- 5. Guelfi S, Hodivala-Dilke K, Bergers G. Targeting the tumour vasculature: from vessel destruction to promotion[J]. Nat Rev Cancer, 2024, 24(10): 655-675. DOI: 10.1038/s41568-024-00736-0.
- 6. Harki O, Boete Q, Pépin JL, et al. Intermittent hypoxia-related alterations in vascular structure and function: a systematic review and meta-analysis of rodent data[J/OL]. Eur Respir J, 2022, 59(3): 2100866[2022-03-17]. https://pubmed.ncbi.nlm.nih.gov/34413154/. DOI: 10.1183/13993003.00866-2021.
- 7. Wan W, Wu Z, Lu J, et al. Obstructive sleep apnea is related with the risk of retinal vein occlusion[J]. Nat Sci Sleep, 2021, 13: 273-281. DOI: 10.2147/NSS.S290583.
- 8. Guo S, Dong L, Li J, et al. C-X3-C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury[J]. Chronic Dis Transl Med, 2021, 7(4): 254-265. DOI: 10.1016/j.cdtm.2021.05.001.
- 9. Wang Y, Lee MYK, Mak JCW, et al. Low-frequency intermittent hypoxia suppresses subcutaneous adipogenesis and induces macrophage polarization in lean mice[J]. Diabetes Metab J, 2019, 43(5): 659-674. DOI: 10.4093/dmj.2018.0196.
- 10. Israel LP, Benharoch D, Gopas J, et al. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome[J]. Sleep, 2013, 36(12): 1947-1955. DOI: 10.5665/sleep.3236.
- 11. Müller MB, Stihl C, Schmid A, et al. A novel OSA-related model of intermittent hypoxia in endothelial cells under flow reveals pronounced inflammatory pathway activation[J/OL]. Front Physiol, 2023, 14: 1108966[2023-04-13]. https://pubmed.ncbi.nlm.nih.gov/37123277/. DOI: 10.3389/fphys.2023.1108966.
- 12. Barnabei L, Laplantine E, Mbongo W, et al. NF-κB: at the borders of autoimmunity and inflammation[J/OL]. Front Immunol, 2021, 12: 716469[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434197/. DOI: 10.3389/fimmu.2021.716469.
- 13. Zeng X, Guo R, Dong M, et al. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression[J]. J Transl Med, 2018, 16(1): 106. DOI: 10.1186/s12967-018-1479-6.
- 14. Schaefer E, Wu W, Mark C, et al. Intermittent hypoxia is a proinflammatory stimulus resulting in IL-6 expression and M1 macrophage polarization[J]. Hepatol Commun, 2017, 1(4): 326-337. DOI: 10.1002/hep4.1045.
- 15. Ji L, Liu Y, Liu P, et al. Serum periostin and TNF-α levels in patients with obstructive sleep apnea-hypopnea syndrome[J]. Sleep Breath, 2021, 25(1): 331-337. DOI: 10.1007/s11325-020-02124-y.
- 16. Liu W, Zhang W, Wang T, et al. Obstructive sleep apnea syndrome promotes the progression of aortic dissection via a ROS- HIF-1α-MMP associated pathway[J]. Int J Biol Sci, 2019, 15(13): 2774-2782. DOI: 10.7150/ijbs.34888.
- 17. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J/OL]. Int J Mol Sci, 2020, 21(24): 9739[2020-12-20]. https://pubmed.ncbi.nlm.nih.gov/33419373/. DOI: 10.3390/ijms21249739.
- 18. 刘远灵, 罗少华, 欧琼, 等. 阻塞性睡眠呼吸暂停低通气综合征患者外周血CD4+T细胞PD-1、CTLA-4表达及VEGF的变化研究[J]. 中华结核和呼吸杂志, 2019, 42(4): 268-274. DOI: 10.3760/cma.j.issn.1001-0939.2019.04.004.Liu YL, Luo SH, Ou Q, et al. The expressions of CTLA-4 and PD-1 on CD(4)(+) T cells and the level of plasma VEGF in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Tuberc Respir Dis, 2019, 42(4): 268-274. DOI: 10.3760/cma.j.issn.1001-0939.2019.04.004.
- 19. Harki O, Tamisier R, Pépin JL, et al. VE-cadherin cleavage in sleep apnoea: new insights into intermittent hypoxia-related endothelial permeability[J/OL]. Eur Respir J, 2021, 58(4): 2004518[2021-10-07]. https://pubmed.ncbi.nlm.nih.gov/33737411/. DOI: 10.1183/13993003.04518-2020.
- 20. Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction[J]. Cell Death Dis, 2020, 11(9): 776. DOI: 10.1038/s41419-020-02985-x.
- 21. Yan YR, Zhang L, Lin YN, et al. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway[J]. Free Radic Biol Med, 2021, 165: 401-410. DOI: 10.1016/j.freeradbiomed.2021.01.053.
- 22. Chen J, Deng X, Lin T, et al. Ferrostatin-1 reversed chronic intermittent hypoxia-induced ferroptosis in aortic endothelial cells via reprogramming mitochondrial function[J]. Nat Sci Sleep, 2024, 16: 401-411. DOI: 10.2147/NSS.S442186.
- 23. Huang J, Zhang H, Cao L, et al. Ferroptosis-related genes are considered as potential targets for CPAP treatment of obstructive sleep apnea[J/OL]. Front Neurol, 2023, 14: 1320954[2023-12-21]. https://pubmed.ncbi.nlm.nih.gov/38178888/. DOI: 10.3389/fneur.2023.1320954.
- 24. Yang YY, Shang J, Liu HG. Role of endoplasmic reticular stress in aortic endothelial apoptosis induced by intermittent/persistent hypoxia[J]. Chin Med J (Engl), 2013, 126(23): 4517-4523. DOI: 10.3760/cma.j.issn.0366-6999.20130602.
- 25. Toffoli S, Delaive E, Dieu M, et al. NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia[J]. Angiogenesis, 2009, 12(4): 339-354. DOI: 10.1007/s10456-009-9156-2.
- 26. Venkataraman S, Vungarala S, Covassin N, et al. Sleep apnea, hypertension and the sympathetic nervous system in the adult population[J]. J Clin Med, 2020, 9(2): 591. DOI: 10.3390/jcm9020591.
- 27. Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea[J]. J Clin Invest, 2020, 130(10): 5042-5051. DOI: 10.1172/JCI137560.
- 28. Moraes DJ, Zoccal DB, Machado BH. Medullary respiratory network drives sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia[J]. Hypertension, 2012, 60(6): 1374-1380. DOI: 10.1161/HYPERTENSIONAHA.111.189332.
- 29. King TL, Heesch CM, Clark CG, et al. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302(10): 1219-1332. DOI: 10.1152/ajpregu.00028.2012.
- 30. Somers VK, Dyken ME, Clary MP, et al. Sympathetic neural mechanisms in obstructive sleep apnea[J]. J Clin Invest, 1995, 96(4): 1897-1904. DOI: 10.1172/JCI118235.
- 31. Ip MS, Lam B, Chan LY, et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure[J]. Am J Respir Crit Care Med, 2000, 162(6): 2166-2171. DOI: 10.1164/ajrccm.162.6.2002126.
- 32. Mochol J, Gawryś J, Szahidewicz-Krupska E, et al. Effect of obstructive sleep apnea and CPAP treatment on the bioavailability of erythrocyte and plasma nitric oxide[J/OL]. Int J Environ Res Public Health, 2022, 19(22): 14719[2022-11-09]. https://pubmed.ncbi.nlm.nih.gov/36429438/. DOI: 10.3390/ijerph192214719.
- 33. Wu ZH, Tang Y, Niu X, et al. The role of nitric oxide (NO) levels in patients with obstructive sleep apnea-hypopnea syndrome: a meta-analysis[J]. Sleep Breath, 2021, 25(1): 9-16. DOI: 10.1007/s11325-020-02095-0.
- 34. Li JR, Zhao YS, Chang Y, et al. Fasudil improves endothelial dysfunction in rats exposed to chronic intermittent hypoxia through RhoA/ROCK/NFATc3 pathway[J/OL]. PLoS One, 2018, 13(4): e0195604[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29641598/. DOI: 10.1371/journal.pone.0195604.
- 35. Dang-Thi-Mai K, Le-Dong NN, Le-Thuong V, et al. Exhaled nitric oxide as a surrogate marker for obstructive sleep apnea severity grading: an in-hospital population study[J]. Nat Sci Sleep, 2021, 13: 763-773. DOI: 10.2147/NSS.S307012.
- 36. Haight JS, Djupesland PG. Nitric oxide (NO) and obstructive sleep apnea (OSA)[J]. Sleep Breath, 2003, 7(2): 53-62. DOI: 10.1007/s11325-003-0053-4.
- 37. Teramoto S, Kume H, Matsuse T, et al. Oxygen administration improves the serum level of nitric oxide metabolites in patients with obstructive sleep apnea syndrome[J]. Sleep Med, 2003, 4(5): 403-407. DOI: 10.1016/s1389-9457(03)00102-3.
- 38. Walsh JT, Montplaisir J. Familial glaucoma with sleep apnoea: a new syndrome?[J]. Thorax, 1982, 37(11): 845-849. DOI: 10.1136/thx.37.11.845.
- 39. Karakucuk S, Goktas S, Aksu M, et al. Ocular blood flow in patients with obstructive sleep apnea syndrome (OSAS)[J]. Graefe's Arch Clin Exp Ophthalmol, 2008, 246(1): 129-134. DOI: 10.1007/s00417-007-0656-8.
- 40. Cerquera Jaramillo MA, Moreno Mazo SE, Toquica Osorio JE. Primary open-angle glaucoma in patients with obstructive sleep apnoea in a Colombian population: a cross-sectional study[J/OL]. BMJ Open, 2023, 13(2): e063506[2023-02-22]. https://pubmed.ncbi.nlm.nih.gov/36813489/. DOI: 10.1136/bmjopen-2022-063506.
- 41. Najmanová E, Pluháček F, Botek M, et al. Intraocular pressure response to short-term extreme normobaric hypoxia exposure[J/OL]. Front Endocrinol (Lausanne), 2019, 9: 785[2019-01-07]. https://pubmed.ncbi.nlm.nih.gov/30666235/. DOI: 10.3389/fendo.2018.00785.
- 42. Chalkiadaki E, Andreanos K, Florou C, et al. Corneal endothelial morphology and thickness alterations in patients with severe obstructive sleep apnea-hypopnea syndrome[J]. Cornea, 2021, 40(1): 73-77. DOI: 10.1097/ICO.0000000000002373.
- 43. Muniesa MJ, Benítez I, Ezpeleta J, et al. Effect of CPAP therapy on 24-hour intraocular pressure-related pattern from contact lens sensors in obstructive sleep apnea syndrome[J]. Transl Vis Sci Technol, 2021, 10(4): 10. DOI: 10.1167/tvst.10.4.10.
- 44. Lee TE, Kim JS, Yeom SW, et al. Long-term effects of obstructive sleep apnea and its treatment on open-angle glaucoma: a big-data cohort study[J]. J Clin Sleep Med, 2023, 19(2): 339-346. DOI: 10.5664/jcsm.10334.
- 45. Bironneau V, Tamisier R, Trzepizur W, et al. Sleep apnoea and endothelial dysfunction: an individual patient data meta-analysis[J/OL]. Sleep Med Rev, 2020, 52: 101309[2020-03-13]. https://pubmed.ncbi.nlm.nih.gov/32234658/. DOI: 10.1016/j.smrv.2020.101309.
- 46. Erdem S, Yilmaz S, Karahan M, et al. Can dynamic and static pupillary responses be used as an indicator of autonomic dysfunction in patients with obstructive sleep apnea syndrome?[J]. Int Ophthalmol, 2021, 41(7): 2555-2563. DOI: 10.1007/s10792-021-01814-0.
- 47. Iannella G, Magliulo G, Greco A, et al. Obstructive sleep apnea syndrome: from symptoms to treatment[J/OL]. Int J Environ Res Public Health, 2022, 19(4): 2459[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35206645/. DOI: 10.3390/ijerph19042459.
- 48. Bonacci E, Fasolo A, Zaffanello M, et al. Early corneal and optic nerve changes in a paediatric population affected by obstructive sleep apnea syndrome[J]. Int Ophthalmol, 2022, 42(4): 1281-1287. DOI: 10.1007/s10792-021-02115-2.
- 49. Yu J, Xiao K, Huang J, et al. Reduced retinal vessel density in obstructive sleep apnea syndrome patients: an optical coherence tomography angiography study[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3506-3512. DOI: 10.1167/iovs.17-21414.
- 50. Cai Y, Sun GS, Zhao L, et al. Quantitative evaluation of retinal microvascular circulation in patients with obstructive sleep apnea-hypopnea using optical coherence tomography angiography[J]. Int Ophthalmol, 2020, 40(12): 3309-3321. DOI: 10.1007/s10792-020-01518-x.
- 51. Ucak T, Unver E. Alterations in parafoveal and optic disc vessel densities in patients with obstructive sleep apnea syndrome[J/OL]. J Ophthalmol, 2020, 2020: 4034382[2020-01-10]. https://pubmed.ncbi.nlm.nih.gov/32148941/. DOI: 10.1155/2020/4034382.
- 52. Altinel MG, Uslu H, Kanra AY, et al. Effect of obstructive sleep apnoea syndrome and continuous positive airway pressure treatment on choroidal structure[J]. Eye (Lond), 2022, 36(10): 1977-1981. DOI: 10.1038/s41433-021-01790-w.
- 53. Cai Y, Liu WB, Zhou M, et al. Diurnal changes of retinal microvascular circulation and RNFL thickness measured by optical coherence tomography angiography in patients with obstructive sleep apnea-hypopnea[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 947586[2022-08-09]. https://pubmed.ncbi.nlm.nih.gov/36017325/. DOI: 10.3389/fendo.2022.947586.
- 54. Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome[J]. Ophthalmologica, 2002, 216(3): 180-184. DOI: 10.1159/000059625.
- 55. Trivli A, Koliarakis I, Terzidou C, et al. Normal-tension glaucoma: pathogenesis and genetics[J]. Exp Ther Med, 2019, 17(1): 563-574. DOI: 10.3892/etm.2018.7011.
- 56. Dziewas R, Schilling M, Engel P, et al. Treatment for obstructive sleep apnoea: effect on peripheral nerve function[J]. J Neurol Neurosurg Psychiatry, 2007, 78(3): 295-297. DOI: 10.1136/jnnp.2006.102806.
- 57. Gutiérrez-Díaz E, Pérez-Rico C, de Atauri MJ, et al. Evaluation of the visual function in obstructive sleep apnea syndrome patients and normal-tension glaucoma by means of the multifocal visual evoked potentials[J]. Graefe's Arch Clin Exp Ophthalmol, 2012, 250(11): 1681-1688. DOI: 10.1007/s00417-012-1982-z.
- 58. Morrow MJ. Ischemic optic neuropathy[J]. Continuum (Minneap Minn), 2019, 25(5): 1215-1235. DOI: 10.1212/CON.0000000000000767.
- 59. Wu Y, Zhou LM, Lou H, et al. The association between obstructive sleep apnea and nonarteritic anterior ischemic optic neuropathy: a systematic review and meta-analysis[J]. Curr Eye Res, 2016, 41(7): 987-992. DOI: 10.3109/02713683.2015.1075221.
- 60. Bulloch G, Seth I, Zhu Z, et al. Ocular manifestations of obstructive sleep apnea: a systematic review and meta-analysis[J]. Graefe's Arch Clin Exp Ophthalmol, 2024, 262(1): 19-32. DOI: 10.1007/s00417-023-06103-3.
- 61. Sun MH, Lee CY, Liao YJ, et al. Nonarteritic anterior ischaemic optic neuropathy and its association with obstructive sleep apnoea: a health insurance database study[J/OL]. Acta Ophthalmol, 2019, 97(1): e64-e70[2018-08-31]. https://pubmed.ncbi.nlm.nih.gov/30171667/. DOI: 10.1111/aos.13832.
- 62. Madan S, Sethi M, Bajpai V, et al. Non-arteritic anterior ischaemic optic neuropathy and obstructive sleep apnoea[J]. Natl Med J India, 2023, 36(6): 364-367. DOI: 10.25259/NMJI_982_20.
- 63. Li X, Zhang Y, Guo T, et al. Influence of obstructive sleep apnea syndrome on the contralateral optic nerve in patients with unilateral nonarteritic anterior ischemic optic neuropathy[J]. J Clin Sleep Med, 2023, 19(2): 347-353. DOI: 10.5664/jcsm.10342.
- 64. Aptel F, Khayi H, Pépin JL, et al. Association of nonarteritic ischemic optic neuropathy with obstructive sleep apnea syndrome: consequences for obstructive sleep apnea screening and Treatment[J]. JAMA Ophthalmol, 2015, 133(7): 797-804. DOI: 10.1001/jamaophthalmol.2015.0893.
- 65. Turnbull CD. Intermittent hypoxia, cardiovascular disease and obstructive sleep apnoea[J]. J Thorac Dis, 2018, 10(Suppl 1): S33-39. DOI: 10.21037/jtd.2017.10.33.
- 66. Jelic S, Le Jemtel TH. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea[J]. Trends Cardiovasc Med, 2008, 18(7): 253-260. DOI: 10.1016/j.tcm.2008.11.008.
- 67. Remond P, Aptel F, Cunnac P, et al. Retinal vessel phenotype in patients with nonarteritic anterior ischemic optic neuropathy[J]. Am J Ophthalmol, 2019, 208: 178-184. DOI: 10.1016/j.ajo.2019.04.007.
- 68. Naranjo-Bonilla P, Giménez-Gómez R, Muñoz-Villanueva MDC, et al. Retinal and choroidal effects of continuous positive airway pressure as treatment for sleep apnea: results at 12 months[J/OL]. Int J Environ Res Public Health, 2022, 19(19): 12637[2022-10-03]. https://pubmed.ncbi.nlm.nih.gov/36231937/. DOI: 10.3390/ijerph191912637.
- 69. 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 中国年龄相关性黄斑变性临床诊疗指南(2023年)[J]. 中华眼科杂志, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649.Chinese Vitreo-Retina Society of Chinese Medical Association, Fundus Disease Group of Chinese Ophthalmologist Association. Evidence-based guidelines for diagnosis and treatment of age-related macular degeneration in China (2023)[J]. Chin J Ophthalmol, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649.
- 70. Schaal S, Sherman MP, Nesmith B, et al. Untreated obstrutive sleep apnea hinders response to bevacizumab in age-related macular degeneration[J]. Retina, 2016, 36(4): 791-797. DOI: 10.1097/IAE.0000000000000981.
- 71. De Guia IL, Eslick S, Naismith SL, et al. The crosstalk between amyloid-β, retina, and sleep for the early diagnosis of Alzheimer's disease: a narrative review[J]. J Alzheimers Dis Rep, 2024, 8(1): 1009-1021. DOI: 10.3233/ADR-230150.
- 72. Fang WY, Rama Raj P, Wu Z, et al. Role of sleep-disordered breathing in age-related macular degeneration[J/OL]. BMJ Open Ophthalmol, 2023, 8(1): e001203[2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/37278414/. DOI: 10.1136/bmjophth-2022-001203.
- 73. Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration[J]. Nat Rev Dis Primers, 2021, 7(1): 31. DOI: 10.1038/s41572-021-00265-2.
- 74. Han X, Lee SS, Ingold N, et al. Associations of sleep apnoea with glaucoma and age-related macular degeneration: an analysis in the United Kingdom Biobank and the Canadian longitudinal study on aging[J]. BMC Med, 2021, 19(1): 104. DOI: 10.1186/s12916-021-01973-y.
- 75. Zhu RC, Li FF, Wu YQ, et al. Minimal effect of sleep on the risk of age-related macular degeneration: a Mendelian randomization study[J/OL]. Front Aging Neurosci, 2023, 15: 1159711[2023-08-21]. https://pubmed.ncbi.nlm.nih.gov/37671084/. DOI: 10.3389/fnagi.2023.1159711.
- 76. Shen X, Kong F, Wen J, et al. The role of inflammation in central serous chorioretinopathy: From mechanisms to therapeutic prospects[J/OL]. Front Pharmacol, 2024, 15: 1200492[2024-05-21]. https://pubmed.ncbi.nlm.nih.gov/38835666/. DOI: 10.3389/fphar.2024.1200492.
- 77. Chatziralli I, Kabanarou SA, Parikakis E, et al. Risk factors for central serous chorioretinopathy: multivariate approach in a case-control study[J]. Curr Eye Res, 2017, 42(7): 1069-1073. DOI: 10.1080/02713683.2016.1276196.
- 78. Wu CY, Riangwiwat T, Rattanawong P, et al. A systematic review and meta-analysis[J]. Retina, 2018, 38(9): 1642-1651. DOI: 10.1097/IAE.0000000000002117.
- 79. Liu PK, Chang YC, Tai MH, et al. The association between central serous chorioretinopathy and sleep apnea: a nationwide population-based study[J]. Retina, 2020, 40(10): 2034-2044. DOI: 10.1097/IAE.0000000000002702.
- 80. Yavaş GF, Küsbeci T, Kaşikci M, et al. Obstructive sleep apnea in patients with central serous chorioretinopathy[J]. Curr Eye Res, 2014, 39(1): 88-92. DOI: 10.3109/02713683.2013.824986.
- 81. 黎晓新. 《中国视网膜静脉阻塞临床诊疗路径专家共识》要点解读[J]. 中华眼底病杂志, 2024, 40(4): 264-267. DOI: 10.3760/cma.j.cn511434-20240320-00113.Li XX. Key points interpretation of Expert consensus on clinical diagnosis and treatment path of retinal vein occlusion in China[J]. Chin J Ocul Fundus Dis, 024, 40(4): 264-267. DOI: 10.3760/cma.j.cn511434-20240320-00113.
- 82. Leroux les Jardins G, Glacet-Bernard A, Lasry S, et al. Occlusion veineuse rétinienne et syndrome d'apnée du sommeil[J]. J Fr Ophtalmol, 2009, 32(6): 420-424. DOI: 10.1016/j.jfo.2009.04.012.
- 83. Govetto A, Domínguez R, Rojas L, et al. Bilateral and simultaneous central retinal vein occlusion in a patient with obstructive sleep apnea syndrome[J]. Case Rep Ophthalmol, 2014, 5(2): 150-156. DOI: 10.1159/000363132.
- 84. Trovato Battagliola E, Pacella F, Malvasi M, et al. Risk factors in central retinal vein occlusion: a multi-center case-control study conducted on the Italian population: demographic, environmental, systemic, and ocular factors that increase the risk for major thrombotic events in the retinal venous system[J]. Eur J Ophthalmol, 2022, 32(5): 2801-2809. DOI: 10.1177/11206721211064469.
- 85. Díaz DE Terán T, González P, González M, et al. Risk factors in developing retinal vein occlusion in subject with obstructive sleep apnea[J]. Minerva Med, 2023, 114(6): 825-831. DOI: 10.23736/S0026-4806.22.07989-7.