1. |
Paciullo F, Valeriani E, Porfidia A, et al. Antithrombotic treatment of retinal vein occlusion: a position statement from the Italian Society on Thrombosis and Haemostasis (SISET)[J]. Blood Transfus, 2022, 20(4): 341-347. DOI: 10.2450/2022.0276-21.
|
2. |
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国主要眼底病慢病管理专家共识—基于改良版德尔菲法制订[J]. 中华眼底病杂志, 2024, 40(4): 253-263. DOI: 10.3760/cma.j.cn511434-20240220-00076.Fundus Fundus Disease Group of Ophthalmological Society of Chinese Medical Association, Fundus DiseaseGroup of Ophthalmologist Branch of Chinese Medical Doctor Association. National consensus on the management of major chronic fundus diseases in China: a modified Delphiapproach[J]. Chin J Ocul Fundus Dis, 2024, 40(4): 253-263. DOI: 10.3760/cma.j.cn511434-20240220-00076.
|
3. |
Fragiotta S, Scuderi L, Iodice CM, et al. Choroidal vasculature changes in age-related macular degeneration: from a molecular to a clinical perspective[J/OL]. Int J Mol Sci, 2022, 23(19): 12010[2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/36233311/. DOI: 10.3390/ijms231912010.
|
4. |
黄厚斌. 视网膜脉络膜的血流调控特点[J]. 眼科, 2024, 33(1): 1-8. DOI: 10.13281/j.cnki.issn.1004-4469.2024.01.001.Huang HB. Circulation control characteristics of retinal and choroid[J]. Ophthalmol CHN, 2024, 33(1): 1-8. DOI: 10.13281/j.cnki.issn.1004-4469.2024.01.001.
|
5. |
Brinks J, van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[J/OL]. Prog Retin Eye Res, 2022, 87: 100994[2021-07-17]. https://pubmed.ncbi.nlm.nih.gov/34280556/. DOI: 10.1016/j.preteyeres.2021.100994.
|
6. |
Zheng G, Li J, Zhou Y, et al. Outer retina and choroid as potential imaging markers for evaluation of neural impairment in early type 2 diabetic patients[J/OL]. Eur J Ophthalmol, 2024, 11: 11206721241258637(20124-06-11)[2024-10-08]. https://pubmed.ncbi.nlm.nih.gov/38862403/. DOI: 10.1177/11206721241258637. [published online ahead of print].
|
7. |
Kwon DH, Kim YC, Kang KT. Clinical significance of choroidal thickness in eyes with ocular ischemic syndrome[J]. Korean J Ophthalmol, 2022, 36(1): 66-73. DOI: 10.3341/kjo.2021.0155.
|
8. |
Liu X, Bi L, Xu Y, et al. Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images[J]. Biomed Opt Express, 2019, 10(4): 1601-1612. DOI: 10.1364/BOE.10.001601.
|
9. |
Akatsuka M, Sugiyama E. Precision at the bedside: practical efficacy of clockwise catheter torque for accurate tip positioning of peripherally inserted central catheters[J/OL]. Cureus, 2023, 15(12): e50766[2023-12-19]. https://pubmed.ncbi.nlm.nih.gov/38239529/. DOI: 10.7759/cureus.50766.
|
10. |
Li D, Wang Z, Chen W, et al. Quantitative analysis of perfusion characteristics using contrast-enhanced ultrasound in patients with choroidal metastasis[J]. Ophthalmic Res, 2022, 65(1): 86-93. DOI: 10.1159/000510777.
|
11. |
Dhirachaikulpanich D, Li X, Porter LF, et al. Integrated microarray and RNAseq transcriptomic analysis of retinal pigment epithelium/choroid in age-related macular degeneration[J/OL]. Front Cell Dev Biol, 2020, 8: 808[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32984320/. DOI: 10.3389/fcell.2020.00808.
|
12. |
Parobková V, Kompaníková P, Lázňovský J, et al. ChOP-CT: quantitative morphometrical analysis of the Hindbrain choroid plexus by X-ray micro-computed tomography[J]. Fluids Barriers CNS, 2024, 21(1): 9. DOI: 10.1186/s12987-023-00502-8.
|
13. |
Almalki YE, Ali MU, Kallu KD, et al. Isolated convolutional-neural-network-based deep-feature extraction for brain tumor classification using shallow classifier[J/OL]. Diagnostics (Basel), 2022, 12(8): 1793[2022-07-24]. https://pubmed.ncbi.nlm.nih.gov/35892504/. DOI: 10.3390/diagnostics12081793.
|
14. |
Aziz AZB, Adams J, Elhabian S. Progressive deepSSM: training methodology for image-to-shape deep models[J]. Shape Med Imaging, 2023, 14350: 157-172. DOI: 10.1007/978-3-031-46914-5_13.
|
15. |
Guo J, Cao W, Nie B, et al. Unsupervised learning composite network to reduce training cost of deep learning model for colorectal cancer diagnosis[J]. IEEE J Transl Eng Health Med, 2022, 11: 54-59. DOI: 10.1109/JTEHM.2022.3224021.
|
16. |
Zhang J, Liu Q, Han X. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem[J/OL]. PLoS One, 2023, 18(3): e0283207[2023-04-21]. https://pubmed.ncbi.nlm.nih.gov/36943840/. DOI: 10.1371/journal.pone.0283207.
|
17. |
Wu S, Wang N, Ao W, et al. Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer[J]. Abdom Radiol, 2024, 49(9): 3003-3014. DOI: 10.1007/s00261-024-04232-9.
|
18. |
Manjunath V, Taha M, Fujimoto JG, et al. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography[J]. Am J Ophthalmol, 2010, 150(3): 325-329. DOI: 10.1016/j.ajo.2010.04.018.
|
19. |
Śpiewak D, Witek K, Drzyzga Ł, et al. An analysis of optical coherence tomography angiography (OCT-A) perfusion density maps in patients treated for retinal vein occlusion with intravitreal Aflibercept[J/OL]. Diagnostics (Basel), 2023, 13(19): 3100[2023-09-29]. https://pubmed.ncbi.nlm.nih.gov/37835843/. DOI: 10.3390/diagnostics13193100.
|
20. |
Hwang BE, Kim M, Park YH. Role of the choroidal vascularity index in branch retinal vein occlusion (BRVO) with macular edema[J/OL]. PLoS One, 2021, 16(10): e0258728[2021-10-21]. https://pubmed.ncbi.nlm.nih.gov/34673807/. DOI: 10.1371/journal.pone.0258728.
|
21. |
Luo Z, Xu Y, Xu K, et al. Choroidal vortex vein drainage system in central serous chorioretinopathy using ultra-widefield optical coherence tomography angiography[J]. Transl Vis Sci Technol, 2023, 12(9): 17. DOI: 10.1167/tvst.12.9.17.
|
22. |
Zhao XY, Zhao Q, Wang CT, et al. Central and peripheral changes in retinal vein occlusion and fellow eyes in ultra-widefield optical coherence tomography angiography[J]. Invest Ophthalmol Vis Sci, 2024, 65(2): 6. DOI: 10.1167/iovs.65.2.6.
|
23. |
Loiudice P, Covello G, Figus M, et al. Choroidal vascularity index in central and branch retinal vein occlusion[J/OL]. J Clin Med, 2022, 11(16): 4756[2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/36012996/. DOI: 10.3390/jcm11164756.
|
24. |
Kang HM, Choi JH, Koh HJ, et al. Changes in peripapillary and subfoveal choroidal thickness in patients with central retinal vein occlusion[J/OL]. PLoS One, 2021, 16(8): e0255182[2021-08-20]. https://pubmed.ncbi.nlm.nih.gov/34415912/. DOI: 10.1371/journal.pone.0255182.
|
25. |
Maruko I, Iida T, Sugano Y, et al. One-year choroidal thickness results after photodynamic therapy for central serous chorioretinopathy[J]. Retina, 2011, 31(9): 1921-1927. DOI: 10.1097/IAE.0b013e31822bf6b1.
|
26. |
Kim KH, Lee DH, Lee JJ, et al. Regional choroidal thickness changes in branch retinal vein occlusion with macular edema[J]. Ophthalmologica, 2015, 234(2): 109-118. DOI: 10.1159/000437276.
|
27. |
Chen L, Yuan M, Sun L, et al. Choroidal thickening in retinal vein occlusion patients with serous retinal detachment[J]. Graefe's Arch Clin Exp Ophthalmol, 2021, 259(4): 883-889. DOI: 10.1007/s00417-020-04983-3.
|
28. |
Park YJ, Kim J, Lee EJ, et al. Peripapillary microvasculature of the retina and choriocapillaris in uninvolved fellow eyes of unilateral retinal vein occlusion patients[J]. Retina, 2022, 42(1): 159-167. DOI: 10.1097/IAE.0000000000003281.
|
29. |
Ulaganathan S, Read SA, Collins MJ, et al. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes[J/OL]. Exp Eye Res, 2019, 189: 107850[2019-10-19]. https://pubmed.ncbi.nlm.nih.gov/31639338/. DOI: 10.1016/j.exer.2019.107850.
|
30. |
Alis A, Guler Alis M. The effect of branch retinal vein occlusion on the vascular structure of the choroid[J/OL]. Photodiagnosis Photodyn Ther, 2022, 37: 102687[2021-12-17]. https://pubmed.ncbi.nlm.nih.gov/34923154/. DOI: 10.1016/j.pdpdt.2021.102687.
|
31. |
Aribas YK, Hondur AM, Tezel TH. Choroidal vascularity index and choriocapillary changes in retinal vein occlusions[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(11): 2389-2397. DOI: 10.1007/s00417-020-04886-3.
|
32. |
Chen L, Yuan M, Sun L, et al. Three-dimensional analysis of choroidal vessels in the eyes of patients with unilateral BRVO[J/OL]. Front Med (Lausanne), 2022, 9: 854184[2022-04-05]. https://pubmed.ncbi.nlm.nih.gov/35479961/. DOI: 10.3389/fmed.2022.854184.
|
33. |
Wu CY, Riangwiwat T, Limpruttidham N, et al. Association of retinal vein occlusion with cardiovascular events and mortality: a systematic review and meta-analysis[J]. Retina, 2019, 39(9): 1635-1645. DOI: 10.1097/IAE.0000000000002472.
|
34. |
Costanzo E, Parravano M, Gilardi M, et al. Microvascular retinal and choroidal changes in retinal vein occlusion analyzed by two different optical coherence tomography angiography devices[J]. Ophthalmologica, 2019, 242(1): 8-15. DOI: 10.1159/000496195.
|
35. |
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病专业委员会. 中国视网膜静脉阻塞临床诊疗路径专家共识[J]. 中华眼底病杂志, 2024, 40(3): 175-185. DOI: 10.3760/cma.j.cn511434-20240201-00056.Fundus Diseases Group in Ophthalmology Branch of Chinese Medical Association, Professional Committee of Fundus Diseases in Ophthalmology Branch of Chinese Medical Doctor Association. Expert consensus on clinical diagnosis and treatment path of retinal vein occlusion in China[J]. Chin J Ocul Fundus Dis, 2024, 40(3): 175-185. DOI: 10.3760/cma.j.cn511434-20240201-00056.
|
36. |
Cornish EE, Zagora SL, Spooner K, et al. Management of macular oedema due to retinal vein occlusion: an evidence-based systematic review and meta-analysis[J]. Clin Exp Ophthalmol, 2023, 51(4): 313-338. DOI: 10.1111/ceo.14225.
|
37. |
Qin HF, Shi FJ, Zhang CY, et al. Anti-VEGF reduces inflammatory features in macular edema secondary to retinal vein occlusion[J]. Int J Ophthalmol, 2022, 15(8): 1296-1304. DOI: 10.18240/ijo.2022.08.11.
|
38. |
Hwang DD, Lee HJ. Long-term changes in the choroidal thickness in patients with unilateral central retinal vein occlusion[J/OL]. Sci Rep, 2023, 13(1): 3711[2023-04-06]. https://pubmed.ncbi.nlm.nih.gov/36878959/. DOI: 10.1038/s41598-023-30239-1.
|
39. |
Aljundi W, Gradinger F, Langenbucher A, et al. Choroidal thickness as a possible predictor of non-response to intravitreal bevacizumab for macular edema after retinal vein occlusion[J/OL]. Sci Rep, 2023, 13(1): 451[2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/36624124/. DOI: 10.1038/s41598-023-27753-7.
|
40. |
王少龙, 孙艳, 侯宁, 等. 视网膜分支静脉阻塞抗VEGF治疗患者脉络膜血管指数的变化及其临床意义[J]. 山东医药, 2022, 62(28): 34-37. DOI: 10.3969/j.issn.1002-266X.2022.28.008.Wang SL, Sun Y, Hou N, et al. Changes and clinical significance of choroidal vascular index in patients with branch retinal vein occlusion treated with anti-VEGF[J]. Shandong Medical Journal, 2022, 62(28): 34-37. DOI: 10.3969/j.issn.1002-266X.2022.28.008.
|
41. |
郎需强, 王康, 李爽, 等. 脉络膜血管指数在视网膜中央静脉阻塞治疗预后评估中价值初步分析[J]. 临床眼科杂志, 2019, 27(4): 298-303. DOI: 10.3969/j.issn.1006-8422.2019.04.003.Lang XQ, Wang K, Li S, et al. A pilot study of choroidal vascularity index as a predictor for treatment outcomes in central retinal vein occlusion[J]. J Clin Ophthalmol, 2019, 27(4): 298-303. DOI: 10.3969/j.issn.1006-8422.2019.04.003.
|
42. |
Khodabandeh A, Shahraki K, Roohipoor R, et al. Quantitative measurement of vascular density and flow using optical coherence tomography angiography (OCTA) in patients with central retinal vein occlusion: can OCTA help in distinguishing ischemic from non-ischemic type?[J]. Int J Retina Vitreous, 2018, 4: 47. DOI: 10.1186/s40942-018-0152-9.
|
43. |
张荟颖, 汤凌云, 蒋沁, 等. 视网膜静脉阻塞继发黄斑水肿患者房水中不同细胞因子含量与视网膜中央厚度的相关性分析[J]. 眼科新进展, 2022, 42(5): 375-377. DOI: 10.13389/j.cnki.rao.2022.0075.Zhang HY, Tang LY, Jiang Q, et al. Correlation of cytokine content in aqueous humor with central retinal thick-ness in patients with macular edema secondary to retinal vein occlusion[J]. Rec Adv Ophthalmol, 2022, 42(5): 375-377. DOI: 10.13389/j.cnki.rao.2022.0075.
|
44. |
Erogul O, Yozgat Z, Sabaner MC, et al. The effect of intravitreal dexamethasone implant on central foveal thickness and choroidal thickness in retinal vein occlusion[J]. Niger J Clin Pract, 2021, 24(1): 121-126. DOI: 10.4103/njcp.njcp_87_20.
|
45. |
Yumusak E, Ornek K, Dikel NH. Comparison of choroidal thickness changes following intravitreal dexamethasone, ranibizumab, and triamcinolone in eyes with retinal vein occlusion[J]. Eur J Ophthalmol, 2016, 26(6): 627-632. DOI: 10.5301/ejo.5000734.
|
46. |
Park JH, Kim EC. The structural and comparative analysis of intravitreal dexamethasone implant (Ozurdex) and anti-VEGF injection in branched retinal vein occlusion patients by optical coherence tomography angiography images quantitation[J]. Semin Ophthalmol, 2021, 36(7): 475-481. DOI: 10.1080/08820538.2021.1890146.
|
47. |
Ho M, Liu DT, Lam DS, et al. Retinal vein occlusions, from basics to the latest treatment[J]. Retina, 2016, 36(3): 432-48. DOI: 10.1097/IAE.0000000000000843.
|
48. |
Eng VA, Leng T. Subthreshold laser therapy for macular oedema from branch retinal vein occlusion: focused review[J]. Br J Ophthalmol, 2020, 104(9): 1184-1189. DOI: 10.1136/bjophthalmol-2019-315192.
|
49. |
尹丹, 孙红双, 刘颖, 等. 微脉冲激光联合雷珠单抗玻璃体腔内注射治疗非缺血型BRVO继发黄斑水肿[J]. 国际眼科杂志, 2023, 23(11): 1870-1874. DOI: 10.3980/j.issn.1672-5123.2023.11.20.Yin D, Sun HQ, Liu Y, et al. Micropulse laser combined with intravitreal injection of Ranibizumab in the treatment of macular edema secondary to non-ischemic branch retinal vein occlusion[J]. Int Eye Sci, 2023, 23(11): 1870-1874. DOI: 10.3980/j.issn.1672-5123.2023.11.20.
|
50. |
朱彦青, 丁银银, 顾佩霞. 自拟化瘀利水方联合雷珠单抗治疗继发性黄斑水肿临床疗效观察[J]. 四川中医, 2022, 40(10): 188-191. DOI: 10.3969/j.issn.1000-3649.2022.10.sczy202210056.Zhu YQ, Ding YY, Gu PX. Clinical Observation of using Huayu Lishui Decoction combined Lucentis in the treatment of secondary macular edema[J]. Journal of Sichuan Traditional Chinese Medicine, 2022, 40(10): 188-191. DOI: 10.3969/j.issn.1000-3649.2022.10.sczy202210056.
|
51. |
范真, 郭晓玲, 姜文静, 等. 四物五子汤治疗视网膜中央静脉阻塞继发黄斑水肿的临床疗效研究[J]. 中国医院用药评价与分析, 2023, 23(3): 300-303. DOI: 10.14009/j.issn.1672-2124.2023.03.010.Fan Z, Guo XL, Jiang WJ, et al. Clinical efficacy of Siwu Wuzi Decoction on macular edema secondary to central retinal vein occlusion[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2023, 23(3): 300-303. DOI: 10.14009/j.issn.1672-2124.2023.03.010.
|
52. |
Yang KB, Sun XY, Sun LP, et al. Aqueous humor cytokine levels and rebound macular edema after conbercept treatment in patients with central retinal vein occlusion[J]. Retina, 2021, 41(4): 834-843. DOI: 10.1097/IAE.0000000000002918.
|
53. |
Cai X, Zhao J, Dang Y. Combination therapy with anti-VEGF and intravitreal dexamethasone implant for macular edema secondary to retinal vein occlusion[J]. Curr Eye Res, 2024, 49(8): 872-878. DOI: 10.1080/02713683.2024.2343055.
|
54. |
Rayess N, Rahimy E, Ying GS, et al. Baseline choroidal thickness as a short-term predictor of visual acuity improvement following antivascular endothelial growth factor therapy in branch retinal vein occlusion[J]. Br J Ophthalmol, 2019, 103(1): 55-59. DOI: 10.1136/bjophthalmol-2018-311898.
|
55. |
Lee EK, Han JM, Hyon JY, et al. Changes in choroidal thickness after intravitreal dexamethasone implant injection in retinal vein occlusion[J]. Br J Ophthalmol, 2015, 99(11): 1543-1549. DOI: 10.1136/bjophthalmol-2014-306417.
|