- Department of Neonatal Medicine, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China;
Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are common and important diseases in preterm infants. What these diseases have in common is altered blood vessel formation and pathological changes in the case of incomplete organ development. Multiple factors interact to cause abnormal angiogenesis, which increases the likelihood of a common pathway for both diseases. However, little is known about the specific mechanism of this balance in the occurrence and development of BPD or ROP, and there are still no animal models to explore the pathogenesis of these two diseases simultaneously. At present, there is no effective prevention program, and the treatment options include drug therapy, surgery, etc. In the future, more studies are needed to find common therapeutic targets for factors affecting angiogenesis, so as to provide a better choice for the treatment of BPD and ROP and improve the effectiveness of the treatment effect.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease[J]. Adv Exp Med Biol, 2010, 661: 323-335. DOI: 10.1007/978-1-60761-500-2_21. |
2. | Smith LE. Pathogenesis of retinopathy of prematurity[J]. Growth Horm IGF Res, 2004, 14(Suppl A): S140-144. DOI: 10.1016/j.ghir.2004.03.030. |
3. | Cao Y, Xue L. Angiostatin[J]. Semin Thromb Hemost, 2004, 30(1): 83-93. DOI: 10.1055/s-2004-822973. |
4. | Pasha AB, Chen XQ, Zhou GP. Bronchopulmonary dysplasia: pathogenesis and treatment[J]. Exp Ther Med, 2018, 16(6): 4315-4321. DOI: 10.3892/etm.2018.6780. |
5. | Shahzad T, Radajewski S, Chao CM, et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development[J]. Mol Cell Pediatr, 2016, 3(1): 23. DOI: 10.1186/s40348-016-0051-9. |
6. | Bhandari V, Bizzarro MJ, Shetty A, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins[J]. Pediatrics, 2006, 117(6): 1901-1906. DOI: 10.1542/peds.2005-1414. |
7. | Bizzarro MJ, Hussain N, Jonsson B, et al. Genetic susceptibility to retinopathy of prematurity[J]. Pediatrics, 2006, 118(5): 1858-1863. DOI: 10.1542/peds.2006-1088. |
8. | Been JV, Debeer A, van Iwaarden JF, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia[J]. Pediatr Res, 2010, 67(1): 83-89. DOI: 10.1203/PDR.0b013e3181c13276. |
9. | Chen J, Smith LE. Retinopathy of prematurity[J]. Angiogenesis, 2007, 10(2): 133-140. DOI: 10.1007/s10456-007-9066-0. |
10. | Levesque BM, Kalish LA, Winston AB, et al. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity[J]. Neonatology, 2013, 104(1): 56-64. DOI: 10.1159/000351040. |
11. | Wallace B, Peisl A, Seedorf G, et al. Anti-sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2018, 197(6): 776-787. DOI: 10.1164/rccm.201707-1371OC. |
12. | McEvoy CT, Durand M. Anti-vascular endothelial growth factor antagonists: a potential primary prevention for bronchopulmonary dysplasia?[J]. Am J Respir Crit Care Med, 2018, 197(6): 703-704. DOI: 10.1164/rccm.201712-2389ED. |
13. | Sonny S, Yuan H, Chen S, et al. GSDMD deficiency ameliorates hyperoxia-induced BPD and ROP in neonatal mice[J/OL]. Sci Rep, 2023, 13(1): 143[2023-01-04]. https://pubmed.ncbi.nlm.nih.gov/36599874/. DOI: 10.1038/s41598-022-27201-y. |
14. | Stevens A, Soden J, Brenchley PE, et al. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter[J]. Cancer Res, 2003, 63(4): 812-816. |
15. | Kwinta P, Bik-Multanowski M, Mitkowska Z, et al. Genetic risk factors of bronchopulmonary dysplasia[J]. Pediatr Res, 2008, 64(6): 682-688. DOI: 10.1203/PDR.0b013e318184edeb. |
16. | Vannay A, Dunai G, Bányász I, et al. Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity[J]. Pediatr Res, 2005, 57(3): 396-398. DOI: 10.1203/01.Pdr.0000153867.80238.E0. |
17. | Yanamandra K, Napper D, Pramanik A, et al. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants[J]. Ophthalmic Genet, 2010, 31(4): 173-177. DOI: 10.3109/13816810.2010.497528. |
18. | Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine[J]. Prog Retin Eye Res, 2003, 22(1): 95-111. DOI: 10.1016/s1350-9462(02)00058-7. |
19. | Brooks SE, Gu X, Samuel S, et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice[J]. Invest Ophthalmol Vis Sci, 2001, 42(1): 222-228. |
20. | Donohue PK, Gilmore MM, Cristofalo E, et al. Inhaled nitric oxide in preterm infants: a systematic review[J/OL]. Pediatrics, 2011, 127(2): e414-e422[2011-01-10]. https://pubmed.ncbi.nlm.nih.gov/21220391/. DOI: 10.1542/peds.2010-3428. |
21. | Askie LM, Ballard RA, Cutter GR, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials[J]. Pediatrics, 2011, 128(4): 729-739. DOI: 10.1542/peds.2010-2725. |
22. | Cole FS, Alleyne C, Barks JD, et al. NIH consensus development conference statement: inhaled nitric-oxide therapy for premature infants[J]. Pediatrics, 2011, 127(2): 363-369. DOI: 10.1542/peds.2010-3507. |
23. | Bhat R, Salas AA, Foster C, et al. Prospective analysis of pulmonary hypertension in extremely low birth weight infants[J/OL]. Pediatrics, 2012, 129(3): e682-e689[2012-02-06]. https://pubmed.ncbi.nlm.nih.gov/22311993/. DOI: 10.1542/peds.2011-1827. |
24. | Hasan SU, Potenziano J, Konduri GG, et al. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants: a randomized clinical trial[J]. JAMA Pediatr, 2017, 171(11): 1081-1089. DOI: 10.1001/jamapediatrics.2017.2618. |
25. | Hellström A, Engström E, Hård A, et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth[J]. Pediatrics, 2003, 112(5): 1016-1020. DOI: 10.1542/peds.112.5.1016. |
26. | Chetty A, Andersson S, Lassus P, et al. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD[J]. Pediatr Pulmonol, 2004, 37(2): 128-136. DOI: 10.1002/ppul.10415. |
27. | Capoluongo E, Ameglio F, Lulli P, et al. Epithelial lining fluid free IGF-I-to-PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants[J/OL]. Am J Physiol Endocrinol Metab, 2007, 292(1): E308-313[2006-09-05]. https://pubmed.ncbi.nlm.nih.gov/16954333/. DOI: 10.1152/ajpendo.00251.2006. |
28. | Capoluongo E, Vento G, Rocchetti S, et al. Mannose-binding lectin polymorphisms and pulmonary outcome in premature neonates: a pilot study[J]. Intensive Care Med, 2007, 33(10): 1787-1794. DOI: 10.1007/s00134-007-0793-x. |
29. | Harijith A, Choo-Wing R, Cataltepe S, et al. A role for matrix metalloproteinase 9 in IFN-γ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 44(5): 621-630. DOI: 10.1165/rcmb.2010-0058OC. |
30. | Price WA, Lee E, Maynor A, et al. Relation between serum insulinlike growth factor-1, insulinlike growth factor binding protein-2, and insulinlike growth factor binding protein-3 and nutritional intake in premature infants with bronchopulmonary dysplasia[J]. J Pediatr Gastroenterol Nutr, 2001, 32(5): 542-549. DOI: 10.1097/00005176-200105000-00010. |
31. | Kielczewski JL, Jarajapu YP, McFarland EL, et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation[J]. Circ Res, 2009, 105(9): 897-905. DOI: 10.1161/circresaha.109.199059. |
32. | Aghai ZH, Faqiri S, Saslow JG, et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone[J]. J Perinatol, 2008, 28(2): 149-155. DOI: 10.1038/sj.jp.7211886. |
33. | Thomas W, Seidenspinner S, Kramer BW, et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome[J]. Pediatr Pulmonol, 2011, 46(8): 777-784. DOI: 10.1002/ppul.21435. |
34. | Sato T, Shima C, Kusaka S. Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity[J]. Am J Ophthalmol, 2011, 151(2): 353-357. DOI: 10.1016/j.ajo.2010.08.037. |
35. | De Paepe ME, Chu S, Hall SJ, et al. Intussusceptive-like angiogenesis in human fetal lung xenografts: link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis?[J]. Exp Lung Res, 2015, 41(9): 477-488. DOI: 10.3109/01902148.2015.1080321. |
36. | Buckley S, Shi W, Barsky L, et al. TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(4): 739-748. DOI: 10.1152/ajplung.00294.2007. |
37. | Zhao S, Overbeek PA. Elevated TGFbeta signaling inhibits ocular vascular development[J]. Dev Biol, 2001, 237(1): 45-53. DOI: 10.1006/dbio.2001.0360. |
38. | Shih SC, Ju M, Liu N, et al. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo[J]. PProc Natl Acad Sci USA, 2003, 100(26): 15859-15864. DOI: 10.1073/pnas.2136855100. |
39. | Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF[J]. Development, 1998, 125(9): 1591-1598. DOI: 10.1242/dev.125.9.1591. |
40. | Pozarska A, Morty RE. A tale of two endoglins: how does tail-less soluble endoglin deregulate lung development?[J]. Am J Respir Cell Mol Biol, 2017, 57(4): 388-390. DOI: 10.1165/rcmb.2017-0211ED. |
41. | Somashekar ST, Sammour I, Huang J, et al. Intra-amniotic soluble endoglin impairs lung development in neonatal rats[J]. Am J Respir Cell Mol Biol, 2017, 57(4): 468-476. DOI: 10.1165/rcmb.2016-0165OC. |
42. | Barnett JM, Suarez S, McCollum GW, et al. Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6490-6498. DOI: 10.1167/iovs.14-14945. |
43. | Asikainen TM, White CW. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?[J]. Toxicol Appl Pharmacol, 2005, 203(2): 177-188. DOI: 10.1016/j.taap.2004.07.008. |
44. | Davis JM, Rosenfeld WN, Richter SE, et al. Safety and pharmacokinetics of multiple doses of recombinant human CuZn superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome[J]. Pediatrics, 1997, 100(1): 24-30. DOI: 10.1542/peds.100.1.24. |
45. | Davis JM, Richter SE, Biswas S, et al. Long-term follow-up of premature infants treated with prophylactic, intratracheal recombinant human CuZn superoxide dismutase[J]. J Perinatol, 2000, 20(4): 213-216. DOI: 10.1038/sj.jp.7200363. |
46. | Loui A, Raab A, Maier RF, et al. Trace elements and antioxidant enzymes in extremely low birthweight infants[J]. J Trace Elem Med Biol, 2010, 24(2): 111-118. DOI: 10.1016/j.jtemb.2009.11.004. |
47. | Carlsson LM, Jonsson J, Edlund T, et al. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia[J]. Proc Natl Acad Sci USA, 1995, 92(14): 6264-6268. DOI: 10.1073/pnas.92.14.6264. |
48. | Davis JM, Parad RB, Michele T, et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase[J]. Pediatrics, 2003, 111(3): 469-476. DOI: 10.1542/peds.111.3.469. |
49. | Parad RB, Allred EN, Rosenfeld WN, et al. Reduction of retinopathy of prematurity in extremely low gestational age newborns treated with recombinant human Cu/Zn superoxide dismutase[J]. Neonatology, 2012, 102(2): 139-144. DOI: 10.1159/000336639. |
50. | Galvani G, Mottolese N, Gennaccaro L, et al. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder[J]. J Neuroinflammation, 2021, 18(1): 155. DOI: 10.1186/s12974-021-02204-0. |
51. | Gupta N, Shyamasundar S, Patnala R, et al. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies[J]. Expert Opin Ther Targets, 2018, 22(9): 765-781. DOI: 10.1080/14728222.2018.1515917. |
52. | Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration[J]. Exp Eye Res, 2003, 76(4): 463-471. DOI: 10.1016/s0014-4835(02)00332-9. |
53. | Dapaah-Siakwan F, Zambrano R, Luo S, et al. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 341-354. DOI: 10.1165/rcmb.2018-0192OC. |
54. | Thomas W, Speer CP. Nonventilatory strategies for prevention and treatment of bronchopulmonary dysplasia--what is the evidence?[J]. Neonatology, 2008, 94(3): 150-159. DOI: 10.1159/000143719. |
55. | Ambalavanan N, Tyson JE, Kennedy KA, et al. Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months[J/OL]. Pediatrics, 2005, 115(3): e249-e254[2005-02-15]. https://pubmed.ncbi.nlm.nih.gov/15713907/. DOI: 10.1542/peds.2004-1812. |
56. | Ozkan H, Duman N, Kumral A, et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity[J]. Physiol Res, 2006, 55(3): 267-275. DOI: 10.33549/physiolres.930754. |
57. | Babu TA, Sharmila V. Vitamin A supplementation in late pregnancy can decrease the incidence of bronchopulmonary dysplasia in newborns[J]. J Matern Fetal Neonatal Med, 2010, 23(12): 1468-1469. DOI: 10.3109/14767051003678168. |
58. | Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants[J/OL]. Cochrane Database Syst Rev, 2007, 1(4): CD000501[2007-10-17]. https://pubmed.ncbi.nlm.nih.gov/17943744/DOI: 10.1002/14651858.CD000501.pub2. |
59. | Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential[J]. Nat Rev Cancer, 2013, 13(4): 258-271. DOI: 10.1038/nrc3484. |
60. | Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC. |
61. | Hartmann JS, Thompson H, Wang H, et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity[J]. Mol Vis, 2011, 17: 1577-1587. |
62. | van Wijngaarden P, Brereton HM, Gibbins IL, et al. Kinetics of strain-dependent differential gene expression in oxygen-induced retinopathy in the rat[J]. Exp Eye Res, 2007, 85(4): 508-517. DOI: 10.1016/j.exer.2007.07.001. |
63. | Wang WF, Ma L, Liu MY, et al. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation[J]. Endocrine, 2015, 49(2): 385-395. DOI: 10.1007/s12020-014-0502-9. |
64. | Wu T, Rao R, Gu H, et al. Retinopathy of prematurity: risk stratification by gestational age[J]. J Perinatol, 2023, 43(6): 694-701. DOI: 10.1038/s41372-023-01604-9. |
65. | Palmer EA, Flynn JT, Hardy RJ, et al. Incidence and early course of retinopathy of prematurity[J]. Ophthalmology, 2020, 127(4): 84-96. DOI: 10.1016/j.ophtha.2020.01.034. |
66. | Singh JK, Wymore EM, Wagner BD, et al. Relationship between severe bronchopulmonary dysplasia and severe retinopathy of prematurity in premature newborns[J/OL]. J AAPOS, 2019, 23(4): e1-e4[2019-05-24]. https://pubmed.ncbi.nlm.nih.gov/31132481/. DOI: 10.1016/j.jaapos.2019.02.008. |
67. | 李亚男, 江倩男, 吕朦, 等. 支气管肺发育不良与早产儿视网膜病变的围产期影响因素及可能关系[J]. 中华围产医学杂志, 2024, 27(2): 111-117. DOI: 10.3760/cma.j.cn113903-20230824-00154.Li YN, Jiang QN, Lyu M, et al. Effects of perinatal risk factors on bronchopulmonary dysplasia and retinopathy in preterm infants and their possible relationship[J]. Chin J Perinat Med, 2024, 27(2): 111-117. DOI: 10.3760/cma.j.cn113903-20230824-00154. |
68. | 杨勇晖, 贺晓日, 张雪菲, 等. 极早早产儿支气管肺发育不良的临床特征[J]. 中南大学学报(医学版), 2023, 48(10): 1592-1601. DOI: 10.11817/j.issn.1672-7347.2023.230192.Yang Y, He X, Zhang X, et al. Clinical characteristics of bronchopulmonary dysplasia in very preterm infants[J]. J Cent South Univ (Med Sci), 2023, 48(10): 1592-1601. DOI: 10.11817/j.issn.1672-7347.2023.230192. |
69. | Bancalari A, Schade R. Update in the treatment of retinopathy of prematurity[J]. Am J Perinatol, 2022, 39(1): 22-30. DOI: 10.1055/s-0040-1713181. |
70. | Maitre NL, Ballard RA, Ellenberg JH, et al. Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach[J]. J Perinatol, 2015, 35(5): 313-321. DOI: 10.1038/jp.2015.19. |
71. | Barnett JM, Yanni SE, Penn JS. The development of the rat model of retinopathy of prematurity[J]. Doc Ophthalmol, 2010, 120(1): 3-12. DOI: 10.1007/s10633-009-9180-y. |
72. | Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(12): 936-947. DOI: 10.1152/ajplung.00159.2014. |
- 1. Abman SH. Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease[J]. Adv Exp Med Biol, 2010, 661: 323-335. DOI: 10.1007/978-1-60761-500-2_21.
- 2. Smith LE. Pathogenesis of retinopathy of prematurity[J]. Growth Horm IGF Res, 2004, 14(Suppl A): S140-144. DOI: 10.1016/j.ghir.2004.03.030.
- 3. Cao Y, Xue L. Angiostatin[J]. Semin Thromb Hemost, 2004, 30(1): 83-93. DOI: 10.1055/s-2004-822973.
- 4. Pasha AB, Chen XQ, Zhou GP. Bronchopulmonary dysplasia: pathogenesis and treatment[J]. Exp Ther Med, 2018, 16(6): 4315-4321. DOI: 10.3892/etm.2018.6780.
- 5. Shahzad T, Radajewski S, Chao CM, et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development[J]. Mol Cell Pediatr, 2016, 3(1): 23. DOI: 10.1186/s40348-016-0051-9.
- 6. Bhandari V, Bizzarro MJ, Shetty A, et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins[J]. Pediatrics, 2006, 117(6): 1901-1906. DOI: 10.1542/peds.2005-1414.
- 7. Bizzarro MJ, Hussain N, Jonsson B, et al. Genetic susceptibility to retinopathy of prematurity[J]. Pediatrics, 2006, 118(5): 1858-1863. DOI: 10.1542/peds.2006-1088.
- 8. Been JV, Debeer A, van Iwaarden JF, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia[J]. Pediatr Res, 2010, 67(1): 83-89. DOI: 10.1203/PDR.0b013e3181c13276.
- 9. Chen J, Smith LE. Retinopathy of prematurity[J]. Angiogenesis, 2007, 10(2): 133-140. DOI: 10.1007/s10456-007-9066-0.
- 10. Levesque BM, Kalish LA, Winston AB, et al. Low urine vascular endothelial growth factor levels are associated with mechanical ventilation, bronchopulmonary dysplasia and retinopathy of prematurity[J]. Neonatology, 2013, 104(1): 56-64. DOI: 10.1159/000351040.
- 11. Wallace B, Peisl A, Seedorf G, et al. Anti-sFlt-1 therapy preserves lung alveolar and vascular growth in antenatal models of bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2018, 197(6): 776-787. DOI: 10.1164/rccm.201707-1371OC.
- 12. McEvoy CT, Durand M. Anti-vascular endothelial growth factor antagonists: a potential primary prevention for bronchopulmonary dysplasia?[J]. Am J Respir Crit Care Med, 2018, 197(6): 703-704. DOI: 10.1164/rccm.201712-2389ED.
- 13. Sonny S, Yuan H, Chen S, et al. GSDMD deficiency ameliorates hyperoxia-induced BPD and ROP in neonatal mice[J/OL]. Sci Rep, 2023, 13(1): 143[2023-01-04]. https://pubmed.ncbi.nlm.nih.gov/36599874/. DOI: 10.1038/s41598-022-27201-y.
- 14. Stevens A, Soden J, Brenchley PE, et al. Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter[J]. Cancer Res, 2003, 63(4): 812-816.
- 15. Kwinta P, Bik-Multanowski M, Mitkowska Z, et al. Genetic risk factors of bronchopulmonary dysplasia[J]. Pediatr Res, 2008, 64(6): 682-688. DOI: 10.1203/PDR.0b013e318184edeb.
- 16. Vannay A, Dunai G, Bányász I, et al. Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity[J]. Pediatr Res, 2005, 57(3): 396-398. DOI: 10.1203/01.Pdr.0000153867.80238.E0.
- 17. Yanamandra K, Napper D, Pramanik A, et al. Endothelial nitric oxide synthase genotypes in the etiology of retinopathy of prematurity in premature infants[J]. Ophthalmic Genet, 2010, 31(4): 173-177. DOI: 10.3109/13816810.2010.497528.
- 18. Lutty GA, McLeod DS. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine[J]. Prog Retin Eye Res, 2003, 22(1): 95-111. DOI: 10.1016/s1350-9462(02)00058-7.
- 19. Brooks SE, Gu X, Samuel S, et al. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice[J]. Invest Ophthalmol Vis Sci, 2001, 42(1): 222-228.
- 20. Donohue PK, Gilmore MM, Cristofalo E, et al. Inhaled nitric oxide in preterm infants: a systematic review[J/OL]. Pediatrics, 2011, 127(2): e414-e422[2011-01-10]. https://pubmed.ncbi.nlm.nih.gov/21220391/. DOI: 10.1542/peds.2010-3428.
- 21. Askie LM, Ballard RA, Cutter GR, et al. Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials[J]. Pediatrics, 2011, 128(4): 729-739. DOI: 10.1542/peds.2010-2725.
- 22. Cole FS, Alleyne C, Barks JD, et al. NIH consensus development conference statement: inhaled nitric-oxide therapy for premature infants[J]. Pediatrics, 2011, 127(2): 363-369. DOI: 10.1542/peds.2010-3507.
- 23. Bhat R, Salas AA, Foster C, et al. Prospective analysis of pulmonary hypertension in extremely low birth weight infants[J/OL]. Pediatrics, 2012, 129(3): e682-e689[2012-02-06]. https://pubmed.ncbi.nlm.nih.gov/22311993/. DOI: 10.1542/peds.2011-1827.
- 24. Hasan SU, Potenziano J, Konduri GG, et al. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants: a randomized clinical trial[J]. JAMA Pediatr, 2017, 171(11): 1081-1089. DOI: 10.1001/jamapediatrics.2017.2618.
- 25. Hellström A, Engström E, Hård A, et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth[J]. Pediatrics, 2003, 112(5): 1016-1020. DOI: 10.1542/peds.112.5.1016.
- 26. Chetty A, Andersson S, Lassus P, et al. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD[J]. Pediatr Pulmonol, 2004, 37(2): 128-136. DOI: 10.1002/ppul.10415.
- 27. Capoluongo E, Ameglio F, Lulli P, et al. Epithelial lining fluid free IGF-I-to-PAPP-A ratio is associated with bronchopulmonary dysplasia in preterm infants[J/OL]. Am J Physiol Endocrinol Metab, 2007, 292(1): E308-313[2006-09-05]. https://pubmed.ncbi.nlm.nih.gov/16954333/. DOI: 10.1152/ajpendo.00251.2006.
- 28. Capoluongo E, Vento G, Rocchetti S, et al. Mannose-binding lectin polymorphisms and pulmonary outcome in premature neonates: a pilot study[J]. Intensive Care Med, 2007, 33(10): 1787-1794. DOI: 10.1007/s00134-007-0793-x.
- 29. Harijith A, Choo-Wing R, Cataltepe S, et al. A role for matrix metalloproteinase 9 in IFN-γ-mediated injury in developing lungs: relevance to bronchopulmonary dysplasia[J]. Am J Respir Cell Mol Biol, 2011, 44(5): 621-630. DOI: 10.1165/rcmb.2010-0058OC.
- 30. Price WA, Lee E, Maynor A, et al. Relation between serum insulinlike growth factor-1, insulinlike growth factor binding protein-2, and insulinlike growth factor binding protein-3 and nutritional intake in premature infants with bronchopulmonary dysplasia[J]. J Pediatr Gastroenterol Nutr, 2001, 32(5): 542-549. DOI: 10.1097/00005176-200105000-00010.
- 31. Kielczewski JL, Jarajapu YP, McFarland EL, et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation[J]. Circ Res, 2009, 105(9): 897-905. DOI: 10.1161/circresaha.109.199059.
- 32. Aghai ZH, Faqiri S, Saslow JG, et al. Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone[J]. J Perinatol, 2008, 28(2): 149-155. DOI: 10.1038/sj.jp.7211886.
- 33. Thomas W, Seidenspinner S, Kramer BW, et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome[J]. Pediatr Pulmonol, 2011, 46(8): 777-784. DOI: 10.1002/ppul.21435.
- 34. Sato T, Shima C, Kusaka S. Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity[J]. Am J Ophthalmol, 2011, 151(2): 353-357. DOI: 10.1016/j.ajo.2010.08.037.
- 35. De Paepe ME, Chu S, Hall SJ, et al. Intussusceptive-like angiogenesis in human fetal lung xenografts: link with bronchopulmonary dysplasia-associated microvascular dysangiogenesis?[J]. Exp Lung Res, 2015, 41(9): 477-488. DOI: 10.3109/01902148.2015.1080321.
- 36. Buckley S, Shi W, Barsky L, et al. TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(4): 739-748. DOI: 10.1152/ajplung.00294.2007.
- 37. Zhao S, Overbeek PA. Elevated TGFbeta signaling inhibits ocular vascular development[J]. Dev Biol, 2001, 237(1): 45-53. DOI: 10.1006/dbio.2001.0360.
- 38. Shih SC, Ju M, Liu N, et al. Transforming growth factor beta1 induction of vascular endothelial growth factor receptor 1: mechanism of pericyte-induced vascular survival in vivo[J]. PProc Natl Acad Sci USA, 2003, 100(26): 15859-15864. DOI: 10.1073/pnas.2136855100.
- 39. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF[J]. Development, 1998, 125(9): 1591-1598. DOI: 10.1242/dev.125.9.1591.
- 40. Pozarska A, Morty RE. A tale of two endoglins: how does tail-less soluble endoglin deregulate lung development?[J]. Am J Respir Cell Mol Biol, 2017, 57(4): 388-390. DOI: 10.1165/rcmb.2017-0211ED.
- 41. Somashekar ST, Sammour I, Huang J, et al. Intra-amniotic soluble endoglin impairs lung development in neonatal rats[J]. Am J Respir Cell Mol Biol, 2017, 57(4): 468-476. DOI: 10.1165/rcmb.2016-0165OC.
- 42. Barnett JM, Suarez S, McCollum GW, et al. Endoglin promotes angiogenesis in cell- and animal-based models of retinal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6490-6498. DOI: 10.1167/iovs.14-14945.
- 43. Asikainen TM, White CW. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?[J]. Toxicol Appl Pharmacol, 2005, 203(2): 177-188. DOI: 10.1016/j.taap.2004.07.008.
- 44. Davis JM, Rosenfeld WN, Richter SE, et al. Safety and pharmacokinetics of multiple doses of recombinant human CuZn superoxide dismutase administered intratracheally to premature neonates with respiratory distress syndrome[J]. Pediatrics, 1997, 100(1): 24-30. DOI: 10.1542/peds.100.1.24.
- 45. Davis JM, Richter SE, Biswas S, et al. Long-term follow-up of premature infants treated with prophylactic, intratracheal recombinant human CuZn superoxide dismutase[J]. J Perinatol, 2000, 20(4): 213-216. DOI: 10.1038/sj.jp.7200363.
- 46. Loui A, Raab A, Maier RF, et al. Trace elements and antioxidant enzymes in extremely low birthweight infants[J]. J Trace Elem Med Biol, 2010, 24(2): 111-118. DOI: 10.1016/j.jtemb.2009.11.004.
- 47. Carlsson LM, Jonsson J, Edlund T, et al. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia[J]. Proc Natl Acad Sci USA, 1995, 92(14): 6264-6268. DOI: 10.1073/pnas.92.14.6264.
- 48. Davis JM, Parad RB, Michele T, et al. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase[J]. Pediatrics, 2003, 111(3): 469-476. DOI: 10.1542/peds.111.3.469.
- 49. Parad RB, Allred EN, Rosenfeld WN, et al. Reduction of retinopathy of prematurity in extremely low gestational age newborns treated with recombinant human Cu/Zn superoxide dismutase[J]. Neonatology, 2012, 102(2): 139-144. DOI: 10.1159/000336639.
- 50. Galvani G, Mottolese N, Gennaccaro L, et al. Inhibition of microglia overactivation restores neuronal survival in a mouse model of CDKL5 deficiency disorder[J]. J Neuroinflammation, 2021, 18(1): 155. DOI: 10.1186/s12974-021-02204-0.
- 51. Gupta N, Shyamasundar S, Patnala R, et al. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies[J]. Expert Opin Ther Targets, 2018, 22(9): 765-781. DOI: 10.1080/14728222.2018.1515917.
- 52. Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration[J]. Exp Eye Res, 2003, 76(4): 463-471. DOI: 10.1016/s0014-4835(02)00332-9.
- 53. Dapaah-Siakwan F, Zambrano R, Luo S, et al. Caspase-1 inhibition attenuates hyperoxia-induced lung and brain injury in neonatal mice[J]. Am J Respir Cell Mol Biol, 2019, 61(3): 341-354. DOI: 10.1165/rcmb.2018-0192OC.
- 54. Thomas W, Speer CP. Nonventilatory strategies for prevention and treatment of bronchopulmonary dysplasia--what is the evidence?[J]. Neonatology, 2008, 94(3): 150-159. DOI: 10.1159/000143719.
- 55. Ambalavanan N, Tyson JE, Kennedy KA, et al. Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months[J/OL]. Pediatrics, 2005, 115(3): e249-e254[2005-02-15]. https://pubmed.ncbi.nlm.nih.gov/15713907/. DOI: 10.1542/peds.2004-1812.
- 56. Ozkan H, Duman N, Kumral A, et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity[J]. Physiol Res, 2006, 55(3): 267-275. DOI: 10.33549/physiolres.930754.
- 57. Babu TA, Sharmila V. Vitamin A supplementation in late pregnancy can decrease the incidence of bronchopulmonary dysplasia in newborns[J]. J Matern Fetal Neonatal Med, 2010, 23(12): 1468-1469. DOI: 10.3109/14767051003678168.
- 58. Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short and long-term morbidity in very low birthweight infants[J/OL]. Cochrane Database Syst Rev, 2007, 1(4): CD000501[2007-10-17]. https://pubmed.ncbi.nlm.nih.gov/17943744/DOI: 10.1002/14651858.CD000501.pub2.
- 59. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential[J]. Nat Rev Cancer, 2013, 13(4): 258-271. DOI: 10.1038/nrc3484.
- 60. Chetty A, Bennett M, Dang L, et al. Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia[J]. Am J Respir Cell Mol Biol, 2015, 52(3): 295-303. DOI: 10.1165/rcmb.2013-0229OC.
- 61. Hartmann JS, Thompson H, Wang H, et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity[J]. Mol Vis, 2011, 17: 1577-1587.
- 62. van Wijngaarden P, Brereton HM, Gibbins IL, et al. Kinetics of strain-dependent differential gene expression in oxygen-induced retinopathy in the rat[J]. Exp Eye Res, 2007, 85(4): 508-517. DOI: 10.1016/j.exer.2007.07.001.
- 63. Wang WF, Ma L, Liu MY, et al. A novel function for fibroblast growth factor 21: stimulation of NADPH oxidase-dependent ROS generation[J]. Endocrine, 2015, 49(2): 385-395. DOI: 10.1007/s12020-014-0502-9.
- 64. Wu T, Rao R, Gu H, et al. Retinopathy of prematurity: risk stratification by gestational age[J]. J Perinatol, 2023, 43(6): 694-701. DOI: 10.1038/s41372-023-01604-9.
- 65. Palmer EA, Flynn JT, Hardy RJ, et al. Incidence and early course of retinopathy of prematurity[J]. Ophthalmology, 2020, 127(4): 84-96. DOI: 10.1016/j.ophtha.2020.01.034.
- 66. Singh JK, Wymore EM, Wagner BD, et al. Relationship between severe bronchopulmonary dysplasia and severe retinopathy of prematurity in premature newborns[J/OL]. J AAPOS, 2019, 23(4): e1-e4[2019-05-24]. https://pubmed.ncbi.nlm.nih.gov/31132481/. DOI: 10.1016/j.jaapos.2019.02.008.
- 67. 李亚男, 江倩男, 吕朦, 等. 支气管肺发育不良与早产儿视网膜病变的围产期影响因素及可能关系[J]. 中华围产医学杂志, 2024, 27(2): 111-117. DOI: 10.3760/cma.j.cn113903-20230824-00154.Li YN, Jiang QN, Lyu M, et al. Effects of perinatal risk factors on bronchopulmonary dysplasia and retinopathy in preterm infants and their possible relationship[J]. Chin J Perinat Med, 2024, 27(2): 111-117. DOI: 10.3760/cma.j.cn113903-20230824-00154.
- 68. 杨勇晖, 贺晓日, 张雪菲, 等. 极早早产儿支气管肺发育不良的临床特征[J]. 中南大学学报(医学版), 2023, 48(10): 1592-1601. DOI: 10.11817/j.issn.1672-7347.2023.230192.Yang Y, He X, Zhang X, et al. Clinical characteristics of bronchopulmonary dysplasia in very preterm infants[J]. J Cent South Univ (Med Sci), 2023, 48(10): 1592-1601. DOI: 10.11817/j.issn.1672-7347.2023.230192.
- 69. Bancalari A, Schade R. Update in the treatment of retinopathy of prematurity[J]. Am J Perinatol, 2022, 39(1): 22-30. DOI: 10.1055/s-0040-1713181.
- 70. Maitre NL, Ballard RA, Ellenberg JH, et al. Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach[J]. J Perinatol, 2015, 35(5): 313-321. DOI: 10.1038/jp.2015.19.
- 71. Barnett JM, Yanni SE, Penn JS. The development of the rat model of retinopathy of prematurity[J]. Doc Ophthalmol, 2010, 120(1): 3-12. DOI: 10.1007/s10633-009-9180-y.
- 72. Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(12): 936-947. DOI: 10.1152/ajplung.00159.2014.