- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin 300384, China;
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, which seriously threatens the vision of patients. The pathogenesis of DR is complex, and the main treatment methods for DR Include: panretinal laser photocoagulation therapy, pars plana vitrectomy and intravitreal injection of drugs, etc. However, all the treatment methods have certain limitations. In recent years, progress has been made in the fields of intravitreal injection of anti-vascular endothelial growth factor drugs, anti-inflammatory therapy, anti-oxidative stress injury drugs, neuroprotective drugs, gene therapy and stem cell therapy. DR treatment drugs are loaded with nanoparticles, hydrogels and photosensitive materials, which can be continuously and efficiently released in the eye, extending the time interval of administration. In the future, personalized and precise treatment based on biomarker detection can develop more accurate treatment plans for patients and improve curative effect.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16012[2016-05-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12. |
2. | Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001. |
3. | Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. DOI: 10.1016/S0161-6420(03)00475-5. |
4. | Eelen G, Treps L, Li X, et al. Basic and therapeutic aspects of angiogenesis updated[J]. Circ Res, 2020, 127(2): 310-329. DOI: 10.1161/CIRCRESAHA.120.316851. |
5. | Inan S, Polat O, Yıgıt S, et al. PASCAL laser platform produces less pain responses compared to conventional laser system during the panretinal photocoagulation: a randomized clinical trial[J]. Afr Health Sci, 2018, 18(4): 1010-1017. DOI: 10.4314/ahs.v18i4.22. |
6. | Lin Z, Deng A, Hou N, et al. Advances in targeted retinal photocoagulation in the treatment of diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1108394[2023-03-02]. https://pubmed.ncbi.nlm.nih.gov/36936172/. DOI: 10.3389/fendo.2023.1108394. |
7. | 袁静, 蒋爱民, 徐庆. 不同波长阈下微脉冲激光在糖尿病视网膜病变治疗中的应用比较[J]. 中国激光医学杂志, 2023, 32(5): 272-277. DOI: 10.13480/j.issn1003-9430.2023.0272.Yuan J, Jiang AM, Xu Q. Comparison of subthreshold micropulse laser of different wavelength in treatment of diabetic retinopathy[J]. Chin J Laser Med Surg, 2023, 32(5): 272-277. DOI: 10.13480/j.issn1003-9430.2023.0272. |
8. | Lai K, Zhao H, Zhou L, et al. Subthreshold pan-retinal photocoagulation using endpoint management algorithm for severe nonproliferative diabetic retinopathy: a paired controlled pilot prospective study[J]. Ophthalmic Res, 2021, 64(4): 648-655. DOI: 10.1159/000512296. |
9. | Paulus YM, Qin Y, Yu Y, et al. Photo-mediated ultrasound therapy to treat retinal neovascularization[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 5244-5247. DOI: 10.1109/EMBC44109.2020.9175882. |
10. | Pan QT, Gao ZQ, Chen XH, et al. Outcomes of a novel bubble ultra-wide field viewing system for vitreoretinal surgery[J/OL]. Acta Ophthalmol, 2022, 100(4): e1024-e1030[2021-08-17]. https://pubmed.ncbi.nlm.nih.gov/34403213/. DOI: 10.1111/aos.15006. |
11. | Tieger MG, Rodriguez M, Wang JC, et al. Impact of contact versus non-contact wide-angle viewing systems on outcomes of primary retinal detachment repair (PRO study report number 5)[J]. Br J Ophthalmol, 2021, 105(3): 410-413. DOI: 10.1136/bjophthalmol-2020-315948. |
12. | Utine CA, Kaya M, Kasal K. Wide-field vitreoretinal surgery in eyes with Boston type 1 keratoprosthesis[J]. Int Ophthalmol, 2022, 42(3): 997-1005. DOI: 10.1007/s10792-021-02083-7. |
13. | Arthur D, Kannan NB, Sen S, et al. Digitally assisted vitreoretinal surgery: a unique surgical teaching tool for beginners[J]. Indian J Ophthalmol, 2022, 70(2): 477-481. DOI: 10.4103/ijo.IJO_914_21. |
14. | Mura M, Martin W, Williams KK, et al. Comparison of 3D digitally assisted visualization system with current standard visualization for the removal of vitreous in a preclinical model[J]. Clin Ophthalmol, 2021, 15: 4499-4505. DOI: 10.2147/OPTH.S327570. |
15. | Nishitsuka K, Nishi K, Yamashita H. Effectiveness of intraoperative optical coherence tomography on vitrectomy for proliferative diabetic retinopathy[J]. Jpn J Ophthalmol, 2022, 66(6): 527-533. DOI: 10.1007/s10384-022-00944-x. |
16. | Yee P, Sevgi DD, Abraham J, et al. iOCT-assisted macular hole surgery: outcomes and utility from the DISCOVER study[J]. Br J Ophthalmol, 2021, 105(3): 403-409. DOI: 10.1136/bjophthalmol-2020-316045. |
17. | Confalonieri F, Barone G, Ferraro V, et al. Early versus late pars plana vitrectomy in vitreous hemorrhage: a systematic review[J/OL]. J Clin Med, 2023, 12(20): 6652[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37892789/. DOI: 10.3390/jcm12206652. |
18. | Dervenis P, Dervenis N, Smith JM, et al. Anti-vascular endothelial growth factors in combination with vitrectomy for complications of proliferative diabetic retinopathy[J/OL]. Cochrane Database Syst Rev, 2023, 5(5): CD008214[2023-05-31]. https://pubmed.ncbi.nlm.nih.gov/37260074/. DOI: 10.1002/14651858.CD008214.pub4. |
19. | Zheng W, Chen S, Ding X, et al. Microinvasive pars plana vitrectomy versus panretinal photocoagulation in the treatment of severe non-proliferative diabetic retinopathy (the VIP study): study protocol for a randomised controlled trial[J/OL]. BMJ Open, 2021, 11(2): e043371[2021-02-22]. https://pubmed.ncbi.nlm.nih.gov/33619191/. DOI: 10.1136/bmjopen-2020-043371. |
20. | Bohley M, Dillinger AE, Braunger BM, et al. Intravenous injection of cyclosporin A loaded lipid nanocapsules fights inflammation and immune system activation in a mouse model of diabetic retinopathy[J]. Drug Deliv Transl Res, 2023, 13(11): 2807-2818. DOI: 10.1007/s13346-023-01350-7. |
21. | Sharma DS, Wadhwa S, Gulati M, et al. Chitosan modified 5-fluorouracil nanostructured lipid carriers for treatment of diabetic retinopathy in rats: a new dimension to an anticancer drug[J]. Int J Biol Macromol, 2023, 224: 810-830. DOI: 10.1016/j.ijbiomac.2022.10.168. |
22. | Amato R, Rossino MG, Cammalleri M, et al. Lisosan G protects the retina from neurovascular damage in experimental diabetic retinopathy[J/OL]. Nutrients, 2018, 10(12): 1932[2018-12-05]. https://pubmed.ncbi.nlm.nih.gov/30563182/. DOI: 10.3390/nu10121932. |
23. | Amato R, Melecchi A, Pucci L, et al. Liposome-mediated delivery improves the efficacy of lisosan G against retinopathy in diabetic mice[J/OL]. Cells, 2023, 12(20): 2448[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/37887292/. DOI: 10.3390/cells12202448. |
24. | Li Z, Yu H, Liu C, et al. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy[J/OL]. Int J Pharm, 2023, 641: 122987[2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/37207860/. DOI: 10.1016/j.ijpharm.2023.122987. |
25. | Zhou X, Lv J, Li G, et al. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery[J/OL]. Biomaterials, 2021, 268: 120600[2020-12-17]. https://pubmed.ncbi.nlm.nih.gov/33360507/. DOI: 10.1016/j.biomaterials.2020.120600. |
26. | Lou X, Hu Y, Zhang H, et al. Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury[J]. J Nanobiotechnology, 2021, 19(1): 436. DOI: 10.1186/s12951-021-01199-3. |
27. | Supe S, Upadhya A, Tripathi S, et al. Liposome-polyethylenimine complexes for the effective delivery of HuR siRNA in the treatment of diabetic retinopathy[J]. Drug Deliv Transl Res, 2023, 13(6): 1675-1698. DOI: 10.1007/s13346-022-01281-9. |
28. | Liu YC, Lin YK, Lin YT, et al. Injectable, antioxidative, and tissue-adhesive nanocomposite hydrogel as a potential treatment for inner retina injuries[J/OL]. Adv Sci (Weinh), 2024, 11(11): e2308635[2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38233151/. DOI: 10.1002/advs.202308635. |
29. | Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles[J]. Nat Commun, 2019, 10(1): 804. DOI: 10.1038/s41467-019-08690-4. |
30. | Madadi M, Khoee S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2023, 15(6): e1908[2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/37271573/. DOI: 10.1002/wnan.1908. |
31. | Jia Y, Wang X, Li L, et al. Lipid nanoparticles optimized for targeting and release of nucleic acid[J/OL]. Adv Mater, 2024, 36(4): e2305300[2023-11-30]. https://pubmed.ncbi.nlm.nih.gov/37547955/. DOI: 10.1002/adma.202305300. |
32. | Gu H, Chen P, Liu X, et al. Trimethylated chitosan-coated flexible liposomes with resveratrol for topical drug delivery to reduce blue-light-induced retinal damage[J/OL]. Int J Biol Macromol, 2023, 252: 126480[2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/37634770/. DOI: 10.1016/j.ijbiomac.2023.126480. |
33. | Rashki S, Asgarpour K, Tarrahimofrad H, et al. Chitosan-based nanoparticles against bacterial infections[J/OL]. Carbohydr Polym, 2021, 251: 117108[2021-01-01]. https://pubmed.ncbi.nlm.nih.gov/33142645/. DOI: 10.1016/j.carbpol.2020.117108. |
34. | Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug delivery[J]. J Control Release, 2018, 285: 106-141. DOI: 10.1016/j.jconrel.2018.06.031. |
35. | Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems[J]. Drug Deliv Transl Res, 2021, 11(4): 1323-1339. DOI: 10.1007/s13346-021-00963-0. |
36. | Ali M, Namjoshi S, Benson HAE, et al. Dissolvable polymer microneedles for drug delivery and diagnostics[J]. J Control Release, 2022, 347: 561-589. DOI: 10.1016/j.jconrel.2022.04.043. |
37. | Alfieri ML, Weil T, Ng DYW, et al. Polydopamine at biological interfaces[J/OL]. Adv Colloid Interface Sci, 2022, 305: 102689[2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35525091/. DOI: 10.1016/j.cis.2022.102689. |
38. | Ramezani M, Khoshhamdam M, Dehshahri A, et al. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes[J]. Colloids Surf B Biointerfaces, 2009, 72(1): 1-5. DOI: 10.1016/j.colsurfb.2009.03.018. |
39. | Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery[J]. Expert Opin Drug Deliv, 2013, 10(2): 215-228. DOI: 10.1517/17425247.2013.744964. |
40. | Ewe A, Schaper A, Barnert S, et al. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery[J]. Acta Biomater, 2014, 10(6): 2663-2673. DOI: 10.1016/j.actbio.2014.02.037. |
41. | Amadio M, Pascale A, Cupri S, et al. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat[J]. Pharmacol Res, 2016, 111: 713-720. DOI: 10.1016/j.phrs.2016.07.042. |
42. | Lee S, Hong HK, Song JS, et al. Intravitreal injectable hydrogel rods with long-acting bevacizumab delivery to the retina[J]. Acta Biomater, 2023, 171: 273-288. DOI: 10.1016/j.actbio.2023.09.025. |
43. | Chen J, Li D, Huo B, et al. Epidermal growth factor receptor-targeted delivery of a singlet-oxygen sensitizer with thermal controlled release for efficient anticancer therapy[J]. Mol Pharm, 2019, 16(8): 3703-3710. DOI: 10.1021/acs.molpharmaceut.9b00670. |
44. | Jing Y, Xu Q, Chen M, et al. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy[J]. Bioorg Med Chem, 2019, 27(11): 2201-2208. DOI: 10.1016/j.bmc.2019.04.023. |
45. | Sai DL, Lee J, Nguyen DL, et al. Tailoring photosensitive ROS for advanced photodynamic therapy[J]. Exp Mol Med., 2021, 53(4): 495-504. DOI: 10.1038/s12276-021-00599-7. |
46. | Li Y, Liu SB, Ni W, et al. Near-infrared BODIPY photosensitizer for modulating mitochondrial fusion proteins and inhibiting choroidal neovascularization[J]. ACS Appl Mater Interfaces, 2023, 15(41): 48027-48037. DOI: 10.1021/acsami.3c11053. |
47. | Haritoglou C, Neubauer AS, Kernt M. Fluocinolone acetonide and its potential in the treatment of chronic diabetic macular edema[J]. Clin Ophthalmol, 2013, 7: 503-509. DOI: 10.2147/OPTH.S34057. |
48. | Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy[J]. Biochem Biophys Res Commun, 2021, 561: 143-150. DOI: 10.1016/j.bbrc.2021.05.027. |
49. | Chen W, Cui W, Wu J, et al. Blocking IL-6 signaling improves glucose tolerance via SLC39A5-mediated suppression of glucagon secretion[J/OL]. Metabolism, 2023, 146: 155641[2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/37380017/. DOI: 10.1016/j.metabol.2023.155641. |
50. | Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy[J]. Mol Neurobiol, 2015, 51(3): 878-884. DOI: 10.1007/s12035-014-8732-7. |
51. | Zafar S, Sachdeva M, Frankfort BJ, et al. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies[J]. Curr Diab Rep, 2019, 19(4): 17. DOI: 10.1007/s11892-019-1134-5. |
52. | Kramarz C, Murphy E, Reilly MM, et al. Nutritional peripheral neuropathies[J]. J Neurol Neurosurg Psychiatry, 2023, 95(1): 61-72. DOI: 10.1136/jnnp-2022-329849. |
53. | Vigneswara V, Ahmed Z. Pigment epithelium-derived factor mediates retinal ganglion cell neuroprotection by suppression of caspase-2[J]. Cell Death Dis, 2019, 10(2): 102. DOI: 10.1038/s41419-019-1379-6. |
54. | Lin B, Zhang X, Xu X. Nerve growth factor protects retinal ganglion cells related to inhibiting endoplasmic reticulum stress by inhibiting IRE1-JNK-CHOP signaling pathway[J]. Ocul Immunol Inflamm, 2022, 30(6): 1341-1346. DOI: 10.1080/09273948.2021.1872651. |
55. | Massoumi H, Amin S, Soleimani M, et al. Extracellular-vesicle-based therapeutics in neuro-ophthalmic disorders[J/OL]. Int J Mol Sci, 2023, 24(10): 9006[2023-05-19]. https://pubmed.ncbi.nlm.nih.gov/37240353/. DOI: 10.3390/ijms24109006. |
56. | Yi W, Xue Y, Qing W, et al. Effective treatment of optic neuropathies by intraocular delivery of MSC-sEVs through augmenting the G-CSF-macrophage pathway[J/OL]. Proc Natl Acad Sci USA, 2024, 121(6): e2305947121[2024-02-06]. https://pubmed.ncbi.nlm.nih.gov/38289952/. DOI: 10.1073/pnas.2305947121. |
57. | Lee JH, Wang JH, Chen J, et al. Gene therapy for visual loss: opportunities and concerns[J]. Prog Retin Eye Res, 2019, 68: 31-53. DOI: 10.1016/j.preteyeres.2018.08.003. |
58. | Chung SH, Sin TN, Ngo T, et al. CRISPR technology for ocular angiogenesis[J/OL]. Front Genome Ed, 2020, 2: 594984[2022-11-22]. https://pubmed.ncbi.nlm.nih.gov/34713223/. DOI: 10.3389/fgeed.2020.594984. |
59. | Liu K, Gao X, Hu C, et al. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress[J/OL]. Redox Biol, 2022, 56: 102460[2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/36088760/. DOI: 10.1016/j.redox.2022.102460. |
60. | Castro BFM, Steel JC, Layton CJ. AAV-based strategies for treatment of retinal and choroidal vascular diseases: advances in age-related macular degeneration and diabetic retinopathy therapies[J]. BioDrugs, 2024, 38(1): 73-93. DOI: 10.1007/s40259-023-00629-y. |
61. | Haurigot V, Villacampa P, Ribera A, et al. Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy[J/OL]. PLoS One, 2012, 7(7): e41511[2012-07-20]. https://pubmed.ncbi.nlm.nih.gov/22911805/. DOI: 10.1371/journal.pone.0041511. |
62. | Tu T, Zhang C, Yan H, et al. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development[J]. Cell Res, 2015, 25(3): 275-287. DOI: 10.1038/cr.2015.15. |
63. | Li Y, Chai JL, Shi X, et al. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis[J]. Theranostics, 2023, 13(7): 2319-2336. DOI: 10.7150/thno.80749. |
64. | Igarashi T, Miyake K, Kato K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model[J]. Gene Ther, 2003, 10(3): 219-226. DOI: 10.1038/sj.gt.3301878. |
65. | Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents[J]. Mol Ther, 2002, 6(4): 490-494. DOI: 10.1006/mthe.2002.0702. |
66. | Yu C, Yang K, Meng X, et al. Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells[J]. Int J Med Sci, 2020, 17(5): 591-598. DOI: 10.7150/ijms.38078. |
67. | Wong TY, Haskova Z, Asik K, et al. Faricimab treat-and-extend for diabetic macular edema: two-year results from the randomized phase 3 YOSEMITE and RHINE trials[J]. Ophthalmology, 2024, 131(6): 708-723. DOI: 10.1016/j.ophtha.2023.12.026. |
68. | Heier JS, Khanani AM, Quezada Ruiz C, et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials[J]. Lancet, 2022, 399(10326): 729-740. DOI: 10.1016/S0140-6736(22)00010-1. |
- 1. Wong TY, Cheung CM, Larsen M, et al. Diabetic retinopathy[J/OL]. Nat Rev Dis Primers, 2016, 2: 16012[2016-05-17]. https://pubmed.ncbi.nlm.nih.gov/27159554/. DOI: 10.1038/nrdp.2016.12.
- 2. Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy[J]. Prog Retin Eye Res, 2016, 51: 156-186. DOI: 10.1016/j.preteyeres.2015.08.001.
- 3. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682. DOI: 10.1016/S0161-6420(03)00475-5.
- 4. Eelen G, Treps L, Li X, et al. Basic and therapeutic aspects of angiogenesis updated[J]. Circ Res, 2020, 127(2): 310-329. DOI: 10.1161/CIRCRESAHA.120.316851.
- 5. Inan S, Polat O, Yıgıt S, et al. PASCAL laser platform produces less pain responses compared to conventional laser system during the panretinal photocoagulation: a randomized clinical trial[J]. Afr Health Sci, 2018, 18(4): 1010-1017. DOI: 10.4314/ahs.v18i4.22.
- 6. Lin Z, Deng A, Hou N, et al. Advances in targeted retinal photocoagulation in the treatment of diabetic retinopathy[J/OL]. Front Endocrinol (Lausanne), 2023, 14: 1108394[2023-03-02]. https://pubmed.ncbi.nlm.nih.gov/36936172/. DOI: 10.3389/fendo.2023.1108394.
- 7. 袁静, 蒋爱民, 徐庆. 不同波长阈下微脉冲激光在糖尿病视网膜病变治疗中的应用比较[J]. 中国激光医学杂志, 2023, 32(5): 272-277. DOI: 10.13480/j.issn1003-9430.2023.0272.Yuan J, Jiang AM, Xu Q. Comparison of subthreshold micropulse laser of different wavelength in treatment of diabetic retinopathy[J]. Chin J Laser Med Surg, 2023, 32(5): 272-277. DOI: 10.13480/j.issn1003-9430.2023.0272.
- 8. Lai K, Zhao H, Zhou L, et al. Subthreshold pan-retinal photocoagulation using endpoint management algorithm for severe nonproliferative diabetic retinopathy: a paired controlled pilot prospective study[J]. Ophthalmic Res, 2021, 64(4): 648-655. DOI: 10.1159/000512296.
- 9. Paulus YM, Qin Y, Yu Y, et al. Photo-mediated ultrasound therapy to treat retinal neovascularization[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 5244-5247. DOI: 10.1109/EMBC44109.2020.9175882.
- 10. Pan QT, Gao ZQ, Chen XH, et al. Outcomes of a novel bubble ultra-wide field viewing system for vitreoretinal surgery[J/OL]. Acta Ophthalmol, 2022, 100(4): e1024-e1030[2021-08-17]. https://pubmed.ncbi.nlm.nih.gov/34403213/. DOI: 10.1111/aos.15006.
- 11. Tieger MG, Rodriguez M, Wang JC, et al. Impact of contact versus non-contact wide-angle viewing systems on outcomes of primary retinal detachment repair (PRO study report number 5)[J]. Br J Ophthalmol, 2021, 105(3): 410-413. DOI: 10.1136/bjophthalmol-2020-315948.
- 12. Utine CA, Kaya M, Kasal K. Wide-field vitreoretinal surgery in eyes with Boston type 1 keratoprosthesis[J]. Int Ophthalmol, 2022, 42(3): 997-1005. DOI: 10.1007/s10792-021-02083-7.
- 13. Arthur D, Kannan NB, Sen S, et al. Digitally assisted vitreoretinal surgery: a unique surgical teaching tool for beginners[J]. Indian J Ophthalmol, 2022, 70(2): 477-481. DOI: 10.4103/ijo.IJO_914_21.
- 14. Mura M, Martin W, Williams KK, et al. Comparison of 3D digitally assisted visualization system with current standard visualization for the removal of vitreous in a preclinical model[J]. Clin Ophthalmol, 2021, 15: 4499-4505. DOI: 10.2147/OPTH.S327570.
- 15. Nishitsuka K, Nishi K, Yamashita H. Effectiveness of intraoperative optical coherence tomography on vitrectomy for proliferative diabetic retinopathy[J]. Jpn J Ophthalmol, 2022, 66(6): 527-533. DOI: 10.1007/s10384-022-00944-x.
- 16. Yee P, Sevgi DD, Abraham J, et al. iOCT-assisted macular hole surgery: outcomes and utility from the DISCOVER study[J]. Br J Ophthalmol, 2021, 105(3): 403-409. DOI: 10.1136/bjophthalmol-2020-316045.
- 17. Confalonieri F, Barone G, Ferraro V, et al. Early versus late pars plana vitrectomy in vitreous hemorrhage: a systematic review[J/OL]. J Clin Med, 2023, 12(20): 6652[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/37892789/. DOI: 10.3390/jcm12206652.
- 18. Dervenis P, Dervenis N, Smith JM, et al. Anti-vascular endothelial growth factors in combination with vitrectomy for complications of proliferative diabetic retinopathy[J/OL]. Cochrane Database Syst Rev, 2023, 5(5): CD008214[2023-05-31]. https://pubmed.ncbi.nlm.nih.gov/37260074/. DOI: 10.1002/14651858.CD008214.pub4.
- 19. Zheng W, Chen S, Ding X, et al. Microinvasive pars plana vitrectomy versus panretinal photocoagulation in the treatment of severe non-proliferative diabetic retinopathy (the VIP study): study protocol for a randomised controlled trial[J/OL]. BMJ Open, 2021, 11(2): e043371[2021-02-22]. https://pubmed.ncbi.nlm.nih.gov/33619191/. DOI: 10.1136/bmjopen-2020-043371.
- 20. Bohley M, Dillinger AE, Braunger BM, et al. Intravenous injection of cyclosporin A loaded lipid nanocapsules fights inflammation and immune system activation in a mouse model of diabetic retinopathy[J]. Drug Deliv Transl Res, 2023, 13(11): 2807-2818. DOI: 10.1007/s13346-023-01350-7.
- 21. Sharma DS, Wadhwa S, Gulati M, et al. Chitosan modified 5-fluorouracil nanostructured lipid carriers for treatment of diabetic retinopathy in rats: a new dimension to an anticancer drug[J]. Int J Biol Macromol, 2023, 224: 810-830. DOI: 10.1016/j.ijbiomac.2022.10.168.
- 22. Amato R, Rossino MG, Cammalleri M, et al. Lisosan G protects the retina from neurovascular damage in experimental diabetic retinopathy[J/OL]. Nutrients, 2018, 10(12): 1932[2018-12-05]. https://pubmed.ncbi.nlm.nih.gov/30563182/. DOI: 10.3390/nu10121932.
- 23. Amato R, Melecchi A, Pucci L, et al. Liposome-mediated delivery improves the efficacy of lisosan G against retinopathy in diabetic mice[J/OL]. Cells, 2023, 12(20): 2448[2023-10-13]. https://pubmed.ncbi.nlm.nih.gov/37887292/. DOI: 10.3390/cells12202448.
- 24. Li Z, Yu H, Liu C, et al. Efficiency co-delivery of ellagic acid and oxygen by a non-invasive liposome for ameliorating diabetic retinopathy[J/OL]. Int J Pharm, 2023, 641: 122987[2023-06-25]. https://pubmed.ncbi.nlm.nih.gov/37207860/. DOI: 10.1016/j.ijpharm.2023.122987.
- 25. Zhou X, Lv J, Li G, et al. Rescue the retina after the ischemic injury by polymer-mediated intracellular superoxide dismutase delivery[J/OL]. Biomaterials, 2021, 268: 120600[2020-12-17]. https://pubmed.ncbi.nlm.nih.gov/33360507/. DOI: 10.1016/j.biomaterials.2020.120600.
- 26. Lou X, Hu Y, Zhang H, et al. Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury[J]. J Nanobiotechnology, 2021, 19(1): 436. DOI: 10.1186/s12951-021-01199-3.
- 27. Supe S, Upadhya A, Tripathi S, et al. Liposome-polyethylenimine complexes for the effective delivery of HuR siRNA in the treatment of diabetic retinopathy[J]. Drug Deliv Transl Res, 2023, 13(6): 1675-1698. DOI: 10.1007/s13346-022-01281-9.
- 28. Liu YC, Lin YK, Lin YT, et al. Injectable, antioxidative, and tissue-adhesive nanocomposite hydrogel as a potential treatment for inner retina injuries[J/OL]. Adv Sci (Weinh), 2024, 11(11): e2308635[2024-01-17]. https://pubmed.ncbi.nlm.nih.gov/38233151/. DOI: 10.1002/advs.202308635.
- 29. Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles[J]. Nat Commun, 2019, 10(1): 804. DOI: 10.1038/s41467-019-08690-4.
- 30. Madadi M, Khoee S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications[J/OL]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2023, 15(6): e1908[2023-06-04]. https://pubmed.ncbi.nlm.nih.gov/37271573/. DOI: 10.1002/wnan.1908.
- 31. Jia Y, Wang X, Li L, et al. Lipid nanoparticles optimized for targeting and release of nucleic acid[J/OL]. Adv Mater, 2024, 36(4): e2305300[2023-11-30]. https://pubmed.ncbi.nlm.nih.gov/37547955/. DOI: 10.1002/adma.202305300.
- 32. Gu H, Chen P, Liu X, et al. Trimethylated chitosan-coated flexible liposomes with resveratrol for topical drug delivery to reduce blue-light-induced retinal damage[J/OL]. Int J Biol Macromol, 2023, 252: 126480[2023-12-01]. https://pubmed.ncbi.nlm.nih.gov/37634770/. DOI: 10.1016/j.ijbiomac.2023.126480.
- 33. Rashki S, Asgarpour K, Tarrahimofrad H, et al. Chitosan-based nanoparticles against bacterial infections[J/OL]. Carbohydr Polym, 2021, 251: 117108[2021-01-01]. https://pubmed.ncbi.nlm.nih.gov/33142645/. DOI: 10.1016/j.carbpol.2020.117108.
- 34. Imperiale JC, Acosta GB, Sosnik A. Polymer-based carriers for ophthalmic drug delivery[J]. J Control Release, 2018, 285: 106-141. DOI: 10.1016/j.jconrel.2018.06.031.
- 35. Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems[J]. Drug Deliv Transl Res, 2021, 11(4): 1323-1339. DOI: 10.1007/s13346-021-00963-0.
- 36. Ali M, Namjoshi S, Benson HAE, et al. Dissolvable polymer microneedles for drug delivery and diagnostics[J]. J Control Release, 2022, 347: 561-589. DOI: 10.1016/j.jconrel.2022.04.043.
- 37. Alfieri ML, Weil T, Ng DYW, et al. Polydopamine at biological interfaces[J/OL]. Adv Colloid Interface Sci, 2022, 305: 102689[2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35525091/. DOI: 10.1016/j.cis.2022.102689.
- 38. Ramezani M, Khoshhamdam M, Dehshahri A, et al. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes[J]. Colloids Surf B Biointerfaces, 2009, 72(1): 1-5. DOI: 10.1016/j.colsurfb.2009.03.018.
- 39. Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery[J]. Expert Opin Drug Deliv, 2013, 10(2): 215-228. DOI: 10.1517/17425247.2013.744964.
- 40. Ewe A, Schaper A, Barnert S, et al. Storage stability of optimal liposome-polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery[J]. Acta Biomater, 2014, 10(6): 2663-2673. DOI: 10.1016/j.actbio.2014.02.037.
- 41. Amadio M, Pascale A, Cupri S, et al. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat[J]. Pharmacol Res, 2016, 111: 713-720. DOI: 10.1016/j.phrs.2016.07.042.
- 42. Lee S, Hong HK, Song JS, et al. Intravitreal injectable hydrogel rods with long-acting bevacizumab delivery to the retina[J]. Acta Biomater, 2023, 171: 273-288. DOI: 10.1016/j.actbio.2023.09.025.
- 43. Chen J, Li D, Huo B, et al. Epidermal growth factor receptor-targeted delivery of a singlet-oxygen sensitizer with thermal controlled release for efficient anticancer therapy[J]. Mol Pharm, 2019, 16(8): 3703-3710. DOI: 10.1021/acs.molpharmaceut.9b00670.
- 44. Jing Y, Xu Q, Chen M, et al. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy[J]. Bioorg Med Chem, 2019, 27(11): 2201-2208. DOI: 10.1016/j.bmc.2019.04.023.
- 45. Sai DL, Lee J, Nguyen DL, et al. Tailoring photosensitive ROS for advanced photodynamic therapy[J]. Exp Mol Med., 2021, 53(4): 495-504. DOI: 10.1038/s12276-021-00599-7.
- 46. Li Y, Liu SB, Ni W, et al. Near-infrared BODIPY photosensitizer for modulating mitochondrial fusion proteins and inhibiting choroidal neovascularization[J]. ACS Appl Mater Interfaces, 2023, 15(41): 48027-48037. DOI: 10.1021/acsami.3c11053.
- 47. Haritoglou C, Neubauer AS, Kernt M. Fluocinolone acetonide and its potential in the treatment of chronic diabetic macular edema[J]. Clin Ophthalmol, 2013, 7: 503-509. DOI: 10.2147/OPTH.S34057.
- 48. Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy[J]. Biochem Biophys Res Commun, 2021, 561: 143-150. DOI: 10.1016/j.bbrc.2021.05.027.
- 49. Chen W, Cui W, Wu J, et al. Blocking IL-6 signaling improves glucose tolerance via SLC39A5-mediated suppression of glucagon secretion[J/OL]. Metabolism, 2023, 146: 155641[2023-06-26]. https://pubmed.ncbi.nlm.nih.gov/37380017/. DOI: 10.1016/j.metabol.2023.155641.
- 50. Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy[J]. Mol Neurobiol, 2015, 51(3): 878-884. DOI: 10.1007/s12035-014-8732-7.
- 51. Zafar S, Sachdeva M, Frankfort BJ, et al. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies[J]. Curr Diab Rep, 2019, 19(4): 17. DOI: 10.1007/s11892-019-1134-5.
- 52. Kramarz C, Murphy E, Reilly MM, et al. Nutritional peripheral neuropathies[J]. J Neurol Neurosurg Psychiatry, 2023, 95(1): 61-72. DOI: 10.1136/jnnp-2022-329849.
- 53. Vigneswara V, Ahmed Z. Pigment epithelium-derived factor mediates retinal ganglion cell neuroprotection by suppression of caspase-2[J]. Cell Death Dis, 2019, 10(2): 102. DOI: 10.1038/s41419-019-1379-6.
- 54. Lin B, Zhang X, Xu X. Nerve growth factor protects retinal ganglion cells related to inhibiting endoplasmic reticulum stress by inhibiting IRE1-JNK-CHOP signaling pathway[J]. Ocul Immunol Inflamm, 2022, 30(6): 1341-1346. DOI: 10.1080/09273948.2021.1872651.
- 55. Massoumi H, Amin S, Soleimani M, et al. Extracellular-vesicle-based therapeutics in neuro-ophthalmic disorders[J/OL]. Int J Mol Sci, 2023, 24(10): 9006[2023-05-19]. https://pubmed.ncbi.nlm.nih.gov/37240353/. DOI: 10.3390/ijms24109006.
- 56. Yi W, Xue Y, Qing W, et al. Effective treatment of optic neuropathies by intraocular delivery of MSC-sEVs through augmenting the G-CSF-macrophage pathway[J/OL]. Proc Natl Acad Sci USA, 2024, 121(6): e2305947121[2024-02-06]. https://pubmed.ncbi.nlm.nih.gov/38289952/. DOI: 10.1073/pnas.2305947121.
- 57. Lee JH, Wang JH, Chen J, et al. Gene therapy for visual loss: opportunities and concerns[J]. Prog Retin Eye Res, 2019, 68: 31-53. DOI: 10.1016/j.preteyeres.2018.08.003.
- 58. Chung SH, Sin TN, Ngo T, et al. CRISPR technology for ocular angiogenesis[J/OL]. Front Genome Ed, 2020, 2: 594984[2022-11-22]. https://pubmed.ncbi.nlm.nih.gov/34713223/. DOI: 10.3389/fgeed.2020.594984.
- 59. Liu K, Gao X, Hu C, et al. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress[J/OL]. Redox Biol, 2022, 56: 102460[2022-09-03]. https://pubmed.ncbi.nlm.nih.gov/36088760/. DOI: 10.1016/j.redox.2022.102460.
- 60. Castro BFM, Steel JC, Layton CJ. AAV-based strategies for treatment of retinal and choroidal vascular diseases: advances in age-related macular degeneration and diabetic retinopathy therapies[J]. BioDrugs, 2024, 38(1): 73-93. DOI: 10.1007/s40259-023-00629-y.
- 61. Haurigot V, Villacampa P, Ribera A, et al. Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy[J/OL]. PLoS One, 2012, 7(7): e41511[2012-07-20]. https://pubmed.ncbi.nlm.nih.gov/22911805/. DOI: 10.1371/journal.pone.0041511.
- 62. Tu T, Zhang C, Yan H, et al. CD146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development[J]. Cell Res, 2015, 25(3): 275-287. DOI: 10.1038/cr.2015.15.
- 63. Li Y, Chai JL, Shi X, et al. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis[J]. Theranostics, 2023, 13(7): 2319-2336. DOI: 10.7150/thno.80749.
- 64. Igarashi T, Miyake K, Kato K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model[J]. Gene Ther, 2003, 10(3): 219-226. DOI: 10.1038/sj.gt.3301878.
- 65. Auricchio A, Behling KC, Maguire AM, et al. Inhibition of retinal neovascularization by intraocular viral-mediated delivery of anti-angiogenic agents[J]. Mol Ther, 2002, 6(4): 490-494. DOI: 10.1006/mthe.2002.0702.
- 66. Yu C, Yang K, Meng X, et al. Downregulation of long noncoding RNA MIAT in the retina of diabetic rats with tail-vein injection of human umbilical-cord mesenchymal stem cells[J]. Int J Med Sci, 2020, 17(5): 591-598. DOI: 10.7150/ijms.38078.
- 67. Wong TY, Haskova Z, Asik K, et al. Faricimab treat-and-extend for diabetic macular edema: two-year results from the randomized phase 3 YOSEMITE and RHINE trials[J]. Ophthalmology, 2024, 131(6): 708-723. DOI: 10.1016/j.ophtha.2023.12.026.
- 68. Heier JS, Khanani AM, Quezada Ruiz C, et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials[J]. Lancet, 2022, 399(10326): 729-740. DOI: 10.1016/S0140-6736(22)00010-1.