- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 21006, China;
Optogenetics, a technique for the precise modulation of cellular activity, has unveiled its distinctive application value within ophthalmology. Optogenetics achieves the light-controlled activation or inhibition of retinal cell functions through precise genetic introduction of light-sensitive proteins, paving new avenues for the treatment of irreversible vision impairment. Optogenetics has emerged as an effective treatment for retinal degenerative diseases and optic nerve damage, it has also made substantial contributions to the realm of visual function research. Furthermore, the integration of optogenetics with light-controlled stem cell technology and light-controlled gene editing technology has unveiled its immense potential in clinical translation. With the advancement of technology and the deepening of clinical practice, optogenetics holds broad prospects within ophthalmology and is poised to offer innovative therapeutic strategies for patients with visual impairments.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020[J/OL]. Lancet Glob Health, 2021, 9(4): e489-e551. https://pubmed.ncbi.nlm.nih.gov/33607016/. DOI: 10.1016/S2214-109X(20)30488-5. |
2. | Botto C, Rucli M, Tekinsoy MD, et al. Early, late stage gene therapy interventions for inherited retinal degenerations[J/OL]. Prog Retin Eye Res, 2022, 86: 100975[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058340/. DOI: 10.1016/j.preteyeres.2021.100975. |
3. | Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art[J]. Signal Transduct Target Ther, 2020, 5(1): 101. DOI: 10.1038/s41392-020-0207-x. |
4. | Jones MK, Lu B, Girman S, et al. Cell-based therapeutic strategies for replacement, preservation in retinal degenerative diseases[J]. Prog Retin Eye Res, 2017, 58: 1-27. DOI: 10.1016/j.preteyeres.2017.01.004. |
5. | Duebel J, Marazova K, Sahel JA. Optogenetics[J]. Curr Opin Ophthalmol, 2015, 26(3): 226-232. DOI: 10.1097/ICU.0000000000000140. |
6. | Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience[J]. Nat Neurosci, 2015, 18: 1213-1225. DOI: 10.1038/nn.4091. |
7. | Harris AR, Gilbert F. Restoring vision using optogenetics without being blind to the risks[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(1): 41-45. DOI: 10.1007/s00417-021-05477-6. |
8. | Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nat Rev Neurosci, 2017, 18(4): 222-235. DOI: 10.1038/nrn.2017.15. |
9. | Deisseroth K. Optogenetics[J]. Nat Methods, 2011, 8(1): 26-29. DOI: 10.1038/nmeth.f.324. |
10. | Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nat New Biol, 1971, 233(39): 149-152. DOI: 10.1038/newbio233149a0. |
11. | Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268. DOI: 10.1038/nn1525. |
12. | Gradinaru V, Thompson KR, Zhang F, et al. Targeting, readout strategies for fast optical neural control in vitro, in vivo[J]. J Neurosci, 2007, 27(52): 14231-14238. DOI: 10.1523/JNEUROSCI.3578-07.2007. |
13. | Lin JY, Lin MZ, Steinbach P, et al. Characterization of engineered channelrhodopsin variants with improved properties, kinetics[J]. Biophys J, 2009, 96(5): 1803-1814. DOI: 10.1016/j.bpj.2008.11.034. |
14. | Erbguth K, Prigge M, Schneider F, et al. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans[J/OL]. PLoS One, 2012, 7(10): e46827[2012-10-03]. https://pubmed.ncbi.nlm.nih.gov/23056472/. DOI: 10.1371/journal.pone.0046827. |
15. | Duarte MJ, Kanumuri VV, Landegger LD, et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants[J]. Mol Ther, 2018, 26(8): 1931-1939. DOI: 10.1016/j.ymthe.2018.05.023. |
16. | Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible, bidirectional control of anxiety[J]. Nature, 2011, 471(7338): 358-362. DOI: 10.1038/nature09820. |
17. | Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps[J]. Nature, 2010, 463(7277): 98-102. DOI: 10.1038/nature08652. |
18. | Kushibiki T, Ishihara M. Application of optogenetics in gene therapy[J]. Curr Gene Ther, 2018, 18(1): 40-44. DOI: 10.2174/1566523218666180302163814. |
19. | Zhang X, Liu Y, Hong X, et al. NG2 glia-derived GABA release tunes inhibitory synapses, contributes to stress-induced anxiety[J/OL]. Nat Commun, 2021, 12(1): 5740[2021-09-30]. https://pubmed.ncbi.nlm.nih.gov/34593806/. DOI: 10.1038/s41467-021-25956-y. |
20. | Cho WH, Noh K, Lee BH, et al. Hippocampal astrocytes modulate anxiety-like behavior[J/OL]. Nat Commun, 2022, 13(1): 6536[2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36344520/. DOI: 10.1038/s41467-022-34201-z. |
21. | De Silva SR, Barnard AR, Hughes S, et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy[J]. Proc Natl Acad Sci USA, 2017, 114(42): 11211-11216. DOI: 10.1073/pnas.1701589114. |
22. | Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity, adapting vision with a cone opsin[J/OL]. Nat Commun, 2019, 10(1): 1221[2019-04-15]. https://pubmed.ncbi.nlm.nih.gov/30874546/. DOI: 10.1038/s41467-019-09124-x. |
23. | Hulliger EC, Hostettler SM, Kleinlogel S. Empowering retinal gene therapy with a specific promoter for human rod, cone ON-bipolar cells[J]. Mol Ther Methods Clin Dev, 2020, 17: 505-519. DOI: 10.1016/j.omtm.2020.03.003. |
24. | Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels[J]. Proc Natl Acad Sci USA, 2011, 108(18): 7595-7600. DOI: 10.1073/pnas.1017210108. |
25. | Vierock J, Rodriguez-Rozada S, Dieter A, et al. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons[J/OL]. Nat Commun, 2021, 12(1): 4527[2021-07-26]. https://pubmed.ncbi.nlm.nih.gov/34312384/. DOI: 10.1038/s41467-021-24759-5. |
26. | Gao X, Bender F, Soh H, et al. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts[J/OL]. Nat Commun, 2021, 12(1): 4801[2021-08-10]. https://pubmed.ncbi.nlm.nih.gov/34376649/. DOI: 10.1038/s41467-021-24805-2. |
27. | Hamada S, Nagase M, Yoshizawa T, et al. An engineered channelrhodopsin optimized for axon terminal activation, circuit mapping[J]. Commun Biol, 2021, 4(1): 461. DOI: 10.1038/s42003-021-01977-7. |
28. | Mahn M, Saraf-Sinik I, Patil P, et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin[J]. Neuron, 2021, 109(10): 1621-1635. DOI: 10.1016/j.neuron.2021.03.013. |
29. | Won J, Pankratov Y, Jang MW, et al. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, , behavior[J]. Neuron, 2022, 110(3): 423-435. DOI: 10.1016/j.neuron.2021.11.003. |
30. | Thyagarajan S, van Wyk M, Lehmann K, et al. Visual function in mice with photoreceptor degeneration, transgenic expression of channelrhodopsin 2 in ganglion cells[J]. J Neurosci, 2010, 30(26): 8745-8758. DOI: 10.1523/JNEUROSCI.4417-09.2010. |
31. | Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 2010, 329(5990): 413-417. DOI: 10.1126/science.1190897. |
32. | Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs[J]. Mol Ther, 2021, 29(2): 464-488. DOI: 10.1016/j.ymthe.2020.12.007. |
33. | Naso MF, Tomkowicz B, Perry WL 3rd, et al. Adeno-associated virus (AAV) as a vector for gene therapy[J]. BioDrugs, 2017, 31(4): 317-334. DOI: 10.1007/s40259-017-0234-5. |
34. | Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy[J]. Nat Rev Genet, 2014, 15(8): 541-555. DOI: 10.1038/nrg3763. |
35. | Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, prospects[J]. AAPS J, 2021, 23(4): 78. DOI: 10.1208/s12248-021-00608-7. |
36. | Dow LE, Fisher J, O'Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9[J]. Nat Biotechnol, 2015, 33(4): 390-394. DOI: 10.1038/nbt.3155. |
37. | Yu Y, Wu X, Guan N, et al. Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs, tumors[J/OL]. Sci Adv, 2020, 6(28): eabb1777[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/32923591/. DOI: 10.1126/sciadv.abb1777. |
38. | Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nat Biotechnol, 2015, 33(7): 755-760. DOI: 10.1038/nbt.3245. |
39. | Chen F, Duan X, Yu Y, et al. Visual function restoration with a highly sensitive, fast Channelrhodopsin in blind mice[J]. Signal Transduct Target Ther, 2022, 7(1): 104. DOI: 10.1038/s41392-022-00935-x. |
40. | Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: therapeutics, clinical trials, end points-a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 270-288. DOI: 10.1111/ceo.13917. |
41. | Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2019, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003. |
42. | Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa[J]. Exp Eye Res, 2016, 150: 149-165. DOI: 10.1016/j.exer.2016.03.018. |
43. | Yan B, Viswanathan S, Brodie SE, et al. A clinically viable approach to restoring visual function using optogenetic gene therapy[J]. Mol Ther Methods Clin Dev, 2023, 29: 406-417. DOI: 10.1016/j.omtm.2023.05.005. |
44. | Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 2006, 50(1): 23-33. DOI: 10.1016/j.neuron.2006.02.026. |
45. | Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin[J]. Proc Natl Acad Sci USA, 2008, 105(41): 16009-16041. DOI: 10.1073/pnas.0806114105. |
46. | Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity[J]. Mol Ther, 2015, 23(10): 1562-1571. DOI: 10.1038/mt.2015.121. |
47. | Ameline B, Tshilenge KT, Weber M, et al. Long-term expression of melanopsin, channelrhodopsin causes no gross alterations in the dystrophic dog retina[J]. Gene Ther, 2017, 24(11): 735-741. DOI: 10.1038/gt.2017.63. |
48. | Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy[J]. Nat Med, 2021, 27(7): 1223-1229. DOI: 10.1038/s41591-021-01351-4. |
49. | Molday RS, Garces FA, Scortecci JF, et al. Structure, function of ABCA4, its role in the visual cycle, Stargardt macular degeneration[J/OL]. Prog Retin Eye Res, 2022, 89: 101036[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/34954332/. DOI: 10.1016/j.preteyeres.2021.101036. |
50. | Georgiou M, Robson AG, Fujinami K, et al. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes[J/OL]. Prog Retin Eye Res, 2024, 100: 101244[2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/38278208/. DOI: 10.1016/j.preteyeres.2024.101244. |
51. | Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese Leber congenital amaurosis cohort[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3642-3655. DOI: 10.1167/iovs.14-15972. |
52. | Dibas A, Batabyal S, Kim S, et al. Efficacy of intravitreal multi-characteristic opsin (MCO-010) optogenetic gene therapy in a mouse model of Leber congenital amaurosis[J]. J Ocul Pharmacol Ther, 2024, 40(10): 702-708. DOI: 10.1089/jop.2024.0084. |
53. | Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, targeted therapy[J]. Genes Dis, 2022, 9(1): 62-79. DOI: 10.1016/j.gendis.2021.02.009. |
54. | Li M, Huisingh C, Messinger J, , et al. Histology of geographic atrophy secondary to age-related macular degeneration: a multilayer approach[J]. Retina, 2018, 38(10): 1937-1950. DOI: 10.1097/IAE.0000000000002182. |
55. | Heier JS, Lad EM, Holz FG, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials[J]. Lancet, 2023, 402(10411): 1434-1448. DOI: 10.1016/S0140-6736(23)01520-9. |
56. | Khanani AM, Patel SS, Staurenghi G, et al. Efficacy, safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial[J]. Lancet, 2023, 402(10411): 1449-1458. DOI: 10.1016/S0140-6736(23)01583-0. |
57. | Bonilha VL, Bell BA, Hu J, et al. Geographic atrophy: confocal scanning laser ophthalmoscopy, histology, inflammation in the region of expanding lesions[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 15. DOI: 10.1167/iovs.61.8.15. |
58. | Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma, projections of glaucoma burden through 2040: a systematic review, meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013. |
59. | Geeraerts E, Claes M, Dekeyster E, et al. Optogenetic stimulation of the superior colliculus confers retinal neuroprotection in a mouse glaucoma model[J]. J Neurosci, 2019, 39(12): 2313-2325. DOI: 10.1523/JNEUROSCI.0872-18.2018. |
60. | Prosseda PP, Alvarado JA, Wang B, et al. Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation[J/OL]. Sci Adv, 2020, 6(18): eaay8699[2020-04-29]. https://pubmed.ncbi.nlm.nih.gov/32494665/. DOI: 10.1126/sciadv.aay8699. |
61. | Kowal TJ, Prosseda PP, Ning K, et al. Optogenetic modulation of intraocular pressure in a glucocorticoid-induced ocular hypertension mouse model[J]. Transl Vis Sci Technol, 2021, 10(6): 10. DOI: 10.1167/tvst.10.6.10. |
62. | Pan Y, Hysinger JD, Barron T, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma[J]. Nature, 2021, 594(7862): 277-282. DOI: 10.1038/s41586-021-03580-6. |
63. | Zhang X, Wang X, Zhu J, et al. Retinal VIP-amacrine cells: their development, structure, function[J]. Eye (Lond), 2024, 38(6): 1065-1076. DOI: 10.1038/s41433-023-02844-x. |
64. | Khabou H, Orendorff E, Trapani F, et al. Optogenetic targeting of AII amacrine cells restores retinal computations performed by the inner retina[J/OL]. Mol Ther Methods Clin Dev, 2023, 31: 101107[2023-09-13]. https://pubmed.ncbi.nlm.nih.gov/37868206/. DOI: 10.1016/j.omtm.2023.09.003. |
65. | Liu Y, Zhang J, Jiang Z, et al. Organization of corticocortical, thalamocortical top-down inputs in the primary visual cortex[J/OL]. Nat Commun, 2024, 15(1): 4495[2024-05-27]. https://pubmed.ncbi.nlm.nih.gov/38802410/. DOI: 10.1038/s41467-024-48924-8. |
66. | Ortiz-Rios M, Agayby B, Balezeau F, et al. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex[J/OL]. Curr Res Neurobiol, 2023, 4: 100087[2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/37397814/. DOI: 10.1016/j.crneur.2023.100087. |
67. | Chernov MM, Friedman RM, Chen G, et al. Functionally specific optogenetic modulation in primate visual cortex[J]. Proc Natl Acad Sci USA, 2018, 115(41): 10505-10510. DOI: 10.1073/pnas.1802018115. |
68. | Chaffiol A, Provansal M, Joffrois C, et al. In vivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction[J]. Mol Ther Methods Clin Dev, 2022, 24: 1-10. DOI: 10.1016/j.omtm.2021.11.009. |
69. | Mahato B, Kaya KD, Fan Y, et al. Pharmacologic fibroblast reprogramming into photoreceptors restores vision[J]. Nature, 2020, 581(7806): 83-88. DOI: 10.1038/s41586-020-2201-4. |
70. | Guo Y, Yan R, Wang X, et al. Near-infrared light-controlled activation of adhesive peptides regulates cell adhesion, multidifferentiation in mesenchymal stem cells on an up-conversion substrate[J]. Nano Lett, 2022, 22(6): 2293-2302. DOI: 10.1021/acs.nanolett.1c04534. |
71. | Wang M, Liu Y, Wang Z, et al. An optogenetic-controlled cell reprogramming system for driving cell fate, light-responsive chimeric mice[J/OL]. Adv Sci (Weinh), 2023, 10(4): e2202858[2022-12-11]. https://pubmed.ncbi.nlm.nih.gov/36507552/. DOI: 10.1002/advs.202202858. |
72. | Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress, possibilities[J]. Clin Exp Optom, 2021, 104(4): 444-454. DOI: 10.1080/08164622.2021.1880863. |
73. | Li F, Lu Z, Wu W, et al. Optogenetic gene editing in regional skin[J]. Cell Res, 2019, 29(10): 862-865. DOI: 10.1038/s41422-019-0209-9. |
74. | Wu Y, Wan X, Zhao D, et al. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa[J/OL]. Nat Commun, 2023, 14(1): 4923[2023-08-15]. https://pubmed.ncbi.nlm.nih.gov/37582961/. DOI: 10.1038/s41467-023-40655-6. |
75. | Meng X, Jia R, Zhao X, et al. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment[J/OL]. Nat Commun, 2024, 15(1): 3773[2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/38710738/. DOI: 10.1038/s41467-024-48092-9. |
76. | Jiang J, Kong K, Fang X, et al. CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma[J/OL]. Cell Rep Med, 2024, 5(5): 101524[2024-05-21]. https://pubmed.ncbi.nlm.nih.gov/38670096/. DOI: 10.1016/j.xcrm.2024.101524. |
77. | Yin J, Fang K, Gao Y, et al. Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration[J/OL]. Nat Commun, 2022, 13(1): 7867[2022-12-22]. https://pubmed.ncbi.nlm.nih.gov/36550137/. DOI: 10.1038/s41467-022-35640-4. |
78. | Zeng Z, Li S, Ye X, et al. Genome editing VEGFA prevents corneal neovascularization in vivo[J/OL]. Adv Sci (Weinh), 2024, 11(25): e2401710[2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/38582513/. DOI: 10.1002/advs.202401710. |
79. | Pan Y, Yang J, Luan X, et al. Near-infrared upconversion–activated CRISPR-Cas9 system: a remote-controlled gene editing platform[J/OL]. Sci Adv, 2019, 5(4): eaav7199[2019-04-03]. https://pubmed.ncbi.nlm.nih.gov/30949579/. DOI: 10.1126/sciadv.aav7199. |
80. | Busskamp V, Picaud S, Sahel JA, et al. Optogenetic therapy for retinitis pigmentosa[J]. Gene Ther, 2012, 19(2): 169-175. DOI: 10.1038/gt.2011.155. |
81. | Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive, fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nat Neurosci, 2011, 14(4): 513-518. DOI: 10.1038/nn.2776. |
82. | Faltus T, Freise J, Fluck C, et al. Ethics, regulation of neuronal optogenetics in the European Union[J]. Pflugers Arch, 2023, 475(12): 1505-1517. DOI: 10.1007/s00424-023-02888-8. |
83. | Owen SF, Liu MH, Kreitzer AC. Thermal constraints on in vivo optogenetic manipulations[J]. Nat Neurosci, 2019, 22(7): 1061-1065. DOI: 10.1038/s41593-019-0422-3. |
84. | Shemesh OA, Tanese D, Zampini V, et al. Temporally precise single-cell-resolution optogenetics[J]. Nat Neurosci, 2017, 20(12): 1796-1806. DOI: 10.1038/s41593-017-0018-8. |
85. | Van Gelder RN, Chiang MF, Dyer MA, et al. Regenerative, restorative medicine for eye disease[J]. Nat Med, 2022, 28(6): 1149-1156. DOI: 10.1038/s41591-022-01862-8. |
86. | Farahbakhsh M, Anderson EJ, Maimon-Mor RO, et al. A demonstration of cone function plasticity after gene therapy in achromatopsia[J]. Brain, 2022, 145(11): 3803-3815. DOI: 10.1093/brain/awac226. |
87. | Lu Q, Sun Y, Liang Z, et al. Nano-optogenetics for disease therapies[J]. ACS Nano, 2024, 18(22): 14123-14144. DOI: 10.1021/acsnano.4c00698. |
88. | Garita-Hernandez M, Lampič M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors[J/OL]. Nat Commun, 2019, 10(1): 4524[2019-10-04]. https://pubmed.ncbi.nlm.nih.gov/31586094/. DOI: 10.1038/s41467-019-12330-2. |
- 1. Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020[J/OL]. Lancet Glob Health, 2021, 9(4): e489-e551. https://pubmed.ncbi.nlm.nih.gov/33607016/. DOI: 10.1016/S2214-109X(20)30488-5.
- 2. Botto C, Rucli M, Tekinsoy MD, et al. Early, late stage gene therapy interventions for inherited retinal degenerations[J/OL]. Prog Retin Eye Res, 2022, 86: 100975[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058340/. DOI: 10.1016/j.preteyeres.2021.100975.
- 3. Hu B, Zhong L, Weng Y, et al. Therapeutic siRNA: state of the art[J]. Signal Transduct Target Ther, 2020, 5(1): 101. DOI: 10.1038/s41392-020-0207-x.
- 4. Jones MK, Lu B, Girman S, et al. Cell-based therapeutic strategies for replacement, preservation in retinal degenerative diseases[J]. Prog Retin Eye Res, 2017, 58: 1-27. DOI: 10.1016/j.preteyeres.2017.01.004.
- 5. Duebel J, Marazova K, Sahel JA. Optogenetics[J]. Curr Opin Ophthalmol, 2015, 26(3): 226-232. DOI: 10.1097/ICU.0000000000000140.
- 6. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience[J]. Nat Neurosci, 2015, 18: 1213-1225. DOI: 10.1038/nn.4091.
- 7. Harris AR, Gilbert F. Restoring vision using optogenetics without being blind to the risks[J]. Graefe's Arch Clin Exp Ophthalmol, 2022, 260(1): 41-45. DOI: 10.1007/s00417-021-05477-6.
- 8. Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience[J]. Nat Rev Neurosci, 2017, 18(4): 222-235. DOI: 10.1038/nrn.2017.15.
- 9. Deisseroth K. Optogenetics[J]. Nat Methods, 2011, 8(1): 26-29. DOI: 10.1038/nmeth.f.324.
- 10. Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nat New Biol, 1971, 233(39): 149-152. DOI: 10.1038/newbio233149a0.
- 11. Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci, 2005, 8(9): 1263-1268. DOI: 10.1038/nn1525.
- 12. Gradinaru V, Thompson KR, Zhang F, et al. Targeting, readout strategies for fast optical neural control in vitro, in vivo[J]. J Neurosci, 2007, 27(52): 14231-14238. DOI: 10.1523/JNEUROSCI.3578-07.2007.
- 13. Lin JY, Lin MZ, Steinbach P, et al. Characterization of engineered channelrhodopsin variants with improved properties, kinetics[J]. Biophys J, 2009, 96(5): 1803-1814. DOI: 10.1016/j.bpj.2008.11.034.
- 14. Erbguth K, Prigge M, Schneider F, et al. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans[J/OL]. PLoS One, 2012, 7(10): e46827[2012-10-03]. https://pubmed.ncbi.nlm.nih.gov/23056472/. DOI: 10.1371/journal.pone.0046827.
- 15. Duarte MJ, Kanumuri VV, Landegger LD, et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants[J]. Mol Ther, 2018, 26(8): 1931-1939. DOI: 10.1016/j.ymthe.2018.05.023.
- 16. Tye KM, Prakash R, Kim SY, et al. Amygdala circuitry mediating reversible, bidirectional control of anxiety[J]. Nature, 2011, 471(7338): 358-362. DOI: 10.1038/nature09820.
- 17. Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps[J]. Nature, 2010, 463(7277): 98-102. DOI: 10.1038/nature08652.
- 18. Kushibiki T, Ishihara M. Application of optogenetics in gene therapy[J]. Curr Gene Ther, 2018, 18(1): 40-44. DOI: 10.2174/1566523218666180302163814.
- 19. Zhang X, Liu Y, Hong X, et al. NG2 glia-derived GABA release tunes inhibitory synapses, contributes to stress-induced anxiety[J/OL]. Nat Commun, 2021, 12(1): 5740[2021-09-30]. https://pubmed.ncbi.nlm.nih.gov/34593806/. DOI: 10.1038/s41467-021-25956-y.
- 20. Cho WH, Noh K, Lee BH, et al. Hippocampal astrocytes modulate anxiety-like behavior[J/OL]. Nat Commun, 2022, 13(1): 6536[2022-11-07]. https://pubmed.ncbi.nlm.nih.gov/36344520/. DOI: 10.1038/s41467-022-34201-z.
- 21. De Silva SR, Barnard AR, Hughes S, et al. Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy[J]. Proc Natl Acad Sci USA, 2017, 114(42): 11211-11216. DOI: 10.1073/pnas.1701589114.
- 22. Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity, adapting vision with a cone opsin[J/OL]. Nat Commun, 2019, 10(1): 1221[2019-04-15]. https://pubmed.ncbi.nlm.nih.gov/30874546/. DOI: 10.1038/s41467-019-09124-x.
- 23. Hulliger EC, Hostettler SM, Kleinlogel S. Empowering retinal gene therapy with a specific promoter for human rod, cone ON-bipolar cells[J]. Mol Ther Methods Clin Dev, 2020, 17: 505-519. DOI: 10.1016/j.omtm.2020.03.003.
- 24. Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels[J]. Proc Natl Acad Sci USA, 2011, 108(18): 7595-7600. DOI: 10.1073/pnas.1017210108.
- 25. Vierock J, Rodriguez-Rozada S, Dieter A, et al. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons[J/OL]. Nat Commun, 2021, 12(1): 4527[2021-07-26]. https://pubmed.ncbi.nlm.nih.gov/34312384/. DOI: 10.1038/s41467-021-24759-5.
- 26. Gao X, Bender F, Soh H, et al. Place fields of single spikes in hippocampus involve Kcnq3 channel-dependent entrainment of complex spike bursts[J/OL]. Nat Commun, 2021, 12(1): 4801[2021-08-10]. https://pubmed.ncbi.nlm.nih.gov/34376649/. DOI: 10.1038/s41467-021-24805-2.
- 27. Hamada S, Nagase M, Yoshizawa T, et al. An engineered channelrhodopsin optimized for axon terminal activation, circuit mapping[J]. Commun Biol, 2021, 4(1): 461. DOI: 10.1038/s42003-021-01977-7.
- 28. Mahn M, Saraf-Sinik I, Patil P, et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin[J]. Neuron, 2021, 109(10): 1621-1635. DOI: 10.1016/j.neuron.2021.03.013.
- 29. Won J, Pankratov Y, Jang MW, et al. Opto-vTrap, an optogenetic trap for reversible inhibition of vesicular release, synaptic transmission, , behavior[J]. Neuron, 2022, 110(3): 423-435. DOI: 10.1016/j.neuron.2021.11.003.
- 30. Thyagarajan S, van Wyk M, Lehmann K, et al. Visual function in mice with photoreceptor degeneration, transgenic expression of channelrhodopsin 2 in ganglion cells[J]. J Neurosci, 2010, 30(26): 8745-8758. DOI: 10.1523/JNEUROSCI.4417-09.2010.
- 31. Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[J]. Science, 2010, 329(5990): 413-417. DOI: 10.1126/science.1190897.
- 32. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs[J]. Mol Ther, 2021, 29(2): 464-488. DOI: 10.1016/j.ymthe.2020.12.007.
- 33. Naso MF, Tomkowicz B, Perry WL 3rd, et al. Adeno-associated virus (AAV) as a vector for gene therapy[J]. BioDrugs, 2017, 31(4): 317-334. DOI: 10.1007/s40259-017-0234-5.
- 34. Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy[J]. Nat Rev Genet, 2014, 15(8): 541-555. DOI: 10.1038/nrg3763.
- 35. Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, prospects[J]. AAPS J, 2021, 23(4): 78. DOI: 10.1208/s12248-021-00608-7.
- 36. Dow LE, Fisher J, O'Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9[J]. Nat Biotechnol, 2015, 33(4): 390-394. DOI: 10.1038/nbt.3155.
- 37. Yu Y, Wu X, Guan N, et al. Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs, tumors[J/OL]. Sci Adv, 2020, 6(28): eabb1777[2020-07-10]. https://pubmed.ncbi.nlm.nih.gov/32923591/. DOI: 10.1126/sciadv.abb1777.
- 38. Nihongaki Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nat Biotechnol, 2015, 33(7): 755-760. DOI: 10.1038/nbt.3245.
- 39. Chen F, Duan X, Yu Y, et al. Visual function restoration with a highly sensitive, fast Channelrhodopsin in blind mice[J]. Signal Transduct Target Ther, 2022, 7(1): 104. DOI: 10.1038/s41392-022-00935-x.
- 40. Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: therapeutics, clinical trials, end points-a review[J]. Clin Exp Ophthalmol, 2021, 49(3): 270-288. DOI: 10.1111/ceo.13917.
- 41. Simunovic MP, Shen W, Lin JY, et al. Optogenetic approaches to vision restoration[J]. Exp Eye Res, 2019, 178: 15-26. DOI: 10.1016/j.exer.2018.09.003.
- 42. Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa[J]. Exp Eye Res, 2016, 150: 149-165. DOI: 10.1016/j.exer.2016.03.018.
- 43. Yan B, Viswanathan S, Brodie SE, et al. A clinically viable approach to restoring visual function using optogenetic gene therapy[J]. Mol Ther Methods Clin Dev, 2023, 29: 406-417. DOI: 10.1016/j.omtm.2023.05.005.
- 44. Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration[J]. Neuron, 2006, 50(1): 23-33. DOI: 10.1016/j.neuron.2006.02.026.
- 45. Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin[J]. Proc Natl Acad Sci USA, 2008, 105(41): 16009-16041. DOI: 10.1073/pnas.0806114105.
- 46. Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity[J]. Mol Ther, 2015, 23(10): 1562-1571. DOI: 10.1038/mt.2015.121.
- 47. Ameline B, Tshilenge KT, Weber M, et al. Long-term expression of melanopsin, channelrhodopsin causes no gross alterations in the dystrophic dog retina[J]. Gene Ther, 2017, 24(11): 735-741. DOI: 10.1038/gt.2017.63.
- 48. Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy[J]. Nat Med, 2021, 27(7): 1223-1229. DOI: 10.1038/s41591-021-01351-4.
- 49. Molday RS, Garces FA, Scortecci JF, et al. Structure, function of ABCA4, its role in the visual cycle, Stargardt macular degeneration[J/OL]. Prog Retin Eye Res, 2022, 89: 101036[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/34954332/. DOI: 10.1016/j.preteyeres.2021.101036.
- 50. Georgiou M, Robson AG, Fujinami K, et al. Phenotyping and genotyping inherited retinal diseases: Molecular genetics, clinical and imaging features, and therapeutics of macular dystrophies, cone and cone-rod dystrophies, rod-cone dystrophies, Leber congenital amaurosis, and cone dysfunction syndromes[J/OL]. Prog Retin Eye Res, 2024, 100: 101244[2024-01-24]. https://pubmed.ncbi.nlm.nih.gov/38278208/. DOI: 10.1016/j.preteyeres.2024.101244.
- 51. Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large Chinese Leber congenital amaurosis cohort[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3642-3655. DOI: 10.1167/iovs.14-15972.
- 52. Dibas A, Batabyal S, Kim S, et al. Efficacy of intravitreal multi-characteristic opsin (MCO-010) optogenetic gene therapy in a mouse model of Leber congenital amaurosis[J]. J Ocul Pharmacol Ther, 2024, 40(10): 702-708. DOI: 10.1089/jop.2024.0084.
- 53. Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, targeted therapy[J]. Genes Dis, 2022, 9(1): 62-79. DOI: 10.1016/j.gendis.2021.02.009.
- 54. Li M, Huisingh C, Messinger J, , et al. Histology of geographic atrophy secondary to age-related macular degeneration: a multilayer approach[J]. Retina, 2018, 38(10): 1937-1950. DOI: 10.1097/IAE.0000000000002182.
- 55. Heier JS, Lad EM, Holz FG, et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials[J]. Lancet, 2023, 402(10411): 1434-1448. DOI: 10.1016/S0140-6736(23)01520-9.
- 56. Khanani AM, Patel SS, Staurenghi G, et al. Efficacy, safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial[J]. Lancet, 2023, 402(10411): 1449-1458. DOI: 10.1016/S0140-6736(23)01583-0.
- 57. Bonilha VL, Bell BA, Hu J, et al. Geographic atrophy: confocal scanning laser ophthalmoscopy, histology, inflammation in the region of expanding lesions[J]. Invest Ophthalmol Vis Sci, 2020, 61(8): 15. DOI: 10.1167/iovs.61.8.15.
- 58. Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma, projections of glaucoma burden through 2040: a systematic review, meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
- 59. Geeraerts E, Claes M, Dekeyster E, et al. Optogenetic stimulation of the superior colliculus confers retinal neuroprotection in a mouse glaucoma model[J]. J Neurosci, 2019, 39(12): 2313-2325. DOI: 10.1523/JNEUROSCI.0872-18.2018.
- 60. Prosseda PP, Alvarado JA, Wang B, et al. Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation[J/OL]. Sci Adv, 2020, 6(18): eaay8699[2020-04-29]. https://pubmed.ncbi.nlm.nih.gov/32494665/. DOI: 10.1126/sciadv.aay8699.
- 61. Kowal TJ, Prosseda PP, Ning K, et al. Optogenetic modulation of intraocular pressure in a glucocorticoid-induced ocular hypertension mouse model[J]. Transl Vis Sci Technol, 2021, 10(6): 10. DOI: 10.1167/tvst.10.6.10.
- 62. Pan Y, Hysinger JD, Barron T, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma[J]. Nature, 2021, 594(7862): 277-282. DOI: 10.1038/s41586-021-03580-6.
- 63. Zhang X, Wang X, Zhu J, et al. Retinal VIP-amacrine cells: their development, structure, function[J]. Eye (Lond), 2024, 38(6): 1065-1076. DOI: 10.1038/s41433-023-02844-x.
- 64. Khabou H, Orendorff E, Trapani F, et al. Optogenetic targeting of AII amacrine cells restores retinal computations performed by the inner retina[J/OL]. Mol Ther Methods Clin Dev, 2023, 31: 101107[2023-09-13]. https://pubmed.ncbi.nlm.nih.gov/37868206/. DOI: 10.1016/j.omtm.2023.09.003.
- 65. Liu Y, Zhang J, Jiang Z, et al. Organization of corticocortical, thalamocortical top-down inputs in the primary visual cortex[J/OL]. Nat Commun, 2024, 15(1): 4495[2024-05-27]. https://pubmed.ncbi.nlm.nih.gov/38802410/. DOI: 10.1038/s41467-024-48924-8.
- 66. Ortiz-Rios M, Agayby B, Balezeau F, et al. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex[J/OL]. Curr Res Neurobiol, 2023, 4: 100087[2023-04-08]. https://pubmed.ncbi.nlm.nih.gov/37397814/. DOI: 10.1016/j.crneur.2023.100087.
- 67. Chernov MM, Friedman RM, Chen G, et al. Functionally specific optogenetic modulation in primate visual cortex[J]. Proc Natl Acad Sci USA, 2018, 115(41): 10505-10510. DOI: 10.1073/pnas.1802018115.
- 68. Chaffiol A, Provansal M, Joffrois C, et al. In vivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction[J]. Mol Ther Methods Clin Dev, 2022, 24: 1-10. DOI: 10.1016/j.omtm.2021.11.009.
- 69. Mahato B, Kaya KD, Fan Y, et al. Pharmacologic fibroblast reprogramming into photoreceptors restores vision[J]. Nature, 2020, 581(7806): 83-88. DOI: 10.1038/s41586-020-2201-4.
- 70. Guo Y, Yan R, Wang X, et al. Near-infrared light-controlled activation of adhesive peptides regulates cell adhesion, multidifferentiation in mesenchymal stem cells on an up-conversion substrate[J]. Nano Lett, 2022, 22(6): 2293-2302. DOI: 10.1021/acs.nanolett.1c04534.
- 71. Wang M, Liu Y, Wang Z, et al. An optogenetic-controlled cell reprogramming system for driving cell fate, light-responsive chimeric mice[J/OL]. Adv Sci (Weinh), 2023, 10(4): e2202858[2022-12-11]. https://pubmed.ncbi.nlm.nih.gov/36507552/. DOI: 10.1002/advs.202202858.
- 72. Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress, possibilities[J]. Clin Exp Optom, 2021, 104(4): 444-454. DOI: 10.1080/08164622.2021.1880863.
- 73. Li F, Lu Z, Wu W, et al. Optogenetic gene editing in regional skin[J]. Cell Res, 2019, 29(10): 862-865. DOI: 10.1038/s41422-019-0209-9.
- 74. Wu Y, Wan X, Zhao D, et al. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa[J/OL]. Nat Commun, 2023, 14(1): 4923[2023-08-15]. https://pubmed.ncbi.nlm.nih.gov/37582961/. DOI: 10.1038/s41467-023-40655-6.
- 75. Meng X, Jia R, Zhao X, et al. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment[J/OL]. Nat Commun, 2024, 15(1): 3773[2024-05-06]. https://pubmed.ncbi.nlm.nih.gov/38710738/. DOI: 10.1038/s41467-024-48092-9.
- 76. Jiang J, Kong K, Fang X, et al. CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma[J/OL]. Cell Rep Med, 2024, 5(5): 101524[2024-05-21]. https://pubmed.ncbi.nlm.nih.gov/38670096/. DOI: 10.1016/j.xcrm.2024.101524.
- 77. Yin J, Fang K, Gao Y, et al. Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration[J/OL]. Nat Commun, 2022, 13(1): 7867[2022-12-22]. https://pubmed.ncbi.nlm.nih.gov/36550137/. DOI: 10.1038/s41467-022-35640-4.
- 78. Zeng Z, Li S, Ye X, et al. Genome editing VEGFA prevents corneal neovascularization in vivo[J/OL]. Adv Sci (Weinh), 2024, 11(25): e2401710[2024-04-06]. https://pubmed.ncbi.nlm.nih.gov/38582513/. DOI: 10.1002/advs.202401710.
- 79. Pan Y, Yang J, Luan X, et al. Near-infrared upconversion–activated CRISPR-Cas9 system: a remote-controlled gene editing platform[J/OL]. Sci Adv, 2019, 5(4): eaav7199[2019-04-03]. https://pubmed.ncbi.nlm.nih.gov/30949579/. DOI: 10.1126/sciadv.aav7199.
- 80. Busskamp V, Picaud S, Sahel JA, et al. Optogenetic therapy for retinitis pigmentosa[J]. Gene Ther, 2012, 19(2): 169-175. DOI: 10.1038/gt.2011.155.
- 81. Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive, fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh[J]. Nat Neurosci, 2011, 14(4): 513-518. DOI: 10.1038/nn.2776.
- 82. Faltus T, Freise J, Fluck C, et al. Ethics, regulation of neuronal optogenetics in the European Union[J]. Pflugers Arch, 2023, 475(12): 1505-1517. DOI: 10.1007/s00424-023-02888-8.
- 83. Owen SF, Liu MH, Kreitzer AC. Thermal constraints on in vivo optogenetic manipulations[J]. Nat Neurosci, 2019, 22(7): 1061-1065. DOI: 10.1038/s41593-019-0422-3.
- 84. Shemesh OA, Tanese D, Zampini V, et al. Temporally precise single-cell-resolution optogenetics[J]. Nat Neurosci, 2017, 20(12): 1796-1806. DOI: 10.1038/s41593-017-0018-8.
- 85. Van Gelder RN, Chiang MF, Dyer MA, et al. Regenerative, restorative medicine for eye disease[J]. Nat Med, 2022, 28(6): 1149-1156. DOI: 10.1038/s41591-022-01862-8.
- 86. Farahbakhsh M, Anderson EJ, Maimon-Mor RO, et al. A demonstration of cone function plasticity after gene therapy in achromatopsia[J]. Brain, 2022, 145(11): 3803-3815. DOI: 10.1093/brain/awac226.
- 87. Lu Q, Sun Y, Liang Z, et al. Nano-optogenetics for disease therapies[J]. ACS Nano, 2024, 18(22): 14123-14144. DOI: 10.1021/acsnano.4c00698.
- 88. Garita-Hernandez M, Lampič M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors[J/OL]. Nat Commun, 2019, 10(1): 4524[2019-10-04]. https://pubmed.ncbi.nlm.nih.gov/31586094/. DOI: 10.1038/s41467-019-12330-2.