- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China;
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM), and its pathogenesis remains incompletely understood. Research has identified inflammation as a key factor in the onset and progression of DR. As a group of systemic metabolic disorders, the dysregulation of polyunsaturated fatty acid (PUFA) metabolism induced by DM is closely related to the inflammatory mechanisms in DR. Recent metabolomic studies have revealed that in various stages of DR and in diabetic animal models, most upregulated PUFAs and their derivatives act as pro-inflammatory mediators, while downregulated PUFAs and their derivatives are predominantly anti-inflammatory. In the progression of DR, some PUFAs may exert anti-inflammatory effects by inhibiting microglial activation, reducing the expression of inflammatory proteins, antagonizing the pro-inflammatory effects of arachidonic acid, and suppressing the activation of inflammasomes and the migration of neutrophils. Conversely, other PUFAs may promote inflammation through mechanisms such as the formation of pro-inflammatory mediators resembling prostaglandins, facilitating leukocyte adhesion, and inducing oxidative stress responses. PUFAs play a complex dual role in the inflammatory mechanisms of DR. A deeper understanding of these mechanisms not only aids in elucidating the pathogenesis of DR but also provides potential targets for developing new therapeutic strategies.
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027. |
2. | Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3. |
3. | Browning DJ, Stewart MW, Lee C. Diabetic macular edema: evidence-based management[J]. Indian J Ophthalmol, 2018, 66(12): 1736-1750. DOI: 10.4103/ijo.IJO_1240_18. |
4. | Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15(7): 473-484. DOI: 10.1038/nrd.2016.32. |
5. | Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(12): 1450-1452. DOI: 10.1096/fj.03-1476fje. |
6. | Ahsan H. Diabetic retinopathy--biomolecules and multiple pathophysiology[J]. Diabetes Metab Syndr, 2015, 9(1): 51-54. DOI: 10.1016/j.dsx.2014.09.011. |
7. | Van Hove I, Hu TT, Beets K, et al. Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration[J/OL]. Prog Retin Eye Res, 2021, 85: 100966[2021-03-26]. https://pubmed.ncbi.nlm.nih.gov/33775825/. DOI: 10.1016/j.preteyeres.2021.100966. |
8. | Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. DOI: 10.1001/archophthalmol.2007.65. |
9. | Ibrahim AS, El-Remessy AB, Matragoon S, et al. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes[J]. Diabetes, 2011, 60(4): 1122-1133. DOI: 10.2337/db10-1160. |
10. | Xu H, Chen M. Diabetic retinopathy and dysregulated innate immunity[J]. Vision Res, 2017, 139: 39-46. DOI: 10.1016/j.visres.2017.04.013. |
11. | Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain[J]. Metab Brain Dis, 2014, 29(3): 747-761. DOI: 10.1007/s11011-014-9562-z. |
12. | Dietzen NM, Arcario MJ, Chen LJ, et al. Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites[J/OL]. Elife, 2022, 11: e74306[2022-01-04]. https://pubmed.ncbi.nlm.nih.gov/34982031/. DOI: 10.7554/eLife.74306. |
13. | Bloch W, Diel P, Zacher J. Ion channel regulation in endothelial function: the key role of dietary polyunsaturated fatty acids for TRPV4 activity[J]. Cardiovasc Res, 2021, 117(12): 2409-2410. DOI: 10.1093/cvr/cvab097. |
14. | Liput KP, Lepczyński A, Ogłuszka M, et al. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis[J/OL]. Int J Mol Sci, 2021, 22(13): 6965[2021-01-28]. https://pubmed.ncbi.nlm.nih.gov/34203461/. DOI: 10.3390/ijms22136965. |
15. | Wang Z, Tang J, Jin E, et al. Metabolomic comparison followed by cross-validation of enzyme-linked immunosorbent assay to reveal potential biomarkers of diabetic retinopathy in chinese with type 2 diabetes[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 986303[2022-09-08]. https://pubmed.ncbi.nlm.nih.gov/36157454/. DOI: 10.3389/fendo.2022.986303. |
16. | Wang Z, Tang J, Jin E, et al. Serum untargeted metabolomics reveal potential biomarkers of progression of diabetic retinopathy in asians[J/OL]. Front Mol Biosci, 2022, 9: 871291[2022-01-09]. https://pubmed.ncbi.nlm.nih.gov/35755823/. DOI: 10.3389/fmolb.2022.871291. |
17. | Guo C, Jiang D, Xu Y, et al. High-coverage serum metabolomics reveals metabolic pathway dysregulation in diabetic retinopathy: a propensity score-matched study[J/OL]. Front Mol Biosci, 2022, 9: 822647[2022-03-17]. https://pubmed.ncbi.nlm.nih.gov/35372500/. DOI: 10.3389/fmolb.2022.822647. |
18. | Alkhalaf A, Kleefstra N, Groenier KH, et al. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy[J/OL]. PLoS One, 2012, 7(7): e40427[2012-07-06]. https://pubmed.ncbi.nlm.nih.gov/22792314/. DOI: 10.1371/journal.pone.0040427. |
19. | Abdelrahman AA, Bunch KL, Sandow PV, et al. Systemic administration of pegylated arginase-1 attenuates the progression of diabetic retinopathy[J/OL]. Cells, 2022, 11(18): 2890[2022-09-16]. https://pubmed.ncbi.nlm.nih.gov/36139465/. DOI: 10.3390/cells11182890. |
20. | Zhao T, Wang Y, Guo X, et al. Altered oxylipin levels in human vitreous indicate imbalance in pro-/anti-inflammatory homeostasis in proliferative diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 214: 108799[2021-10-21]. https://pubmed.ncbi.nlm.nih.gov/34687725/. DOI: 10.1016/j.exer.2021.108799. |
21. | Chu KO, Chan TI, Chan KP, et al. Untargeted metabolomic analysis of aqueous humor in diabetic macular edema[J]. Mol Vis, 2022, 28: 230-244. |
22. | Wen X, Ng TK, Liu Q, et al. Azelaic acid and guanosine in tears improve discrimination of proliferative from non-proliferative diabetic retinopathy in type-2 diabetes patients: a tear metabolomics study[J/OL]. Heliyon, 2023, 9(5): e16109[2023-05-18]. https://pubmed.ncbi.nlm.nih.gov/37305454/. DOI: 10.1016/j.heliyon.2023.e16109. |
23. | Zhou Z, Zheng Z, Xiong X, et al. Gut microbiota composition and fecal metabolic profiling in patients with diabetic retinopathy[J/OL]. Front Cell Dev Biol, 2021, 9: 732204[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34722512/. DOI: 10.3389/fcell.2021.732204. |
24. | Ye P, Zhang X, Xu Y, et al. Alterations of the gut microbiome and metabolome in patients with proliferative diabetic retinopathy[J/OL]. Front Microbiol, 2021, 12: 667632[2021-09-18]. https://pubmed.ncbi.nlm.nih.gov/34566901/. DOI: 10.3389/fmicb.2021.667632. |
25. | Fort PE, Rajendiran TM, Soni T, et al. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy[J/OL]. JCI insight, 2021, 6(19): e152109 [2021-10-08]. https://pubmed.ncbi.nlm.nih.gov/34437304/. DOI: 10.1172/jci.insight.152109. |
26. | Sas KM, Lin J, Rajendiran TM, et al. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model[J]. J Lipid Res, 2018, 59(2): 173-183. DOI: 10.1194/jlr.M077222. |
27. | Ge N, Kong L, Zhang AH, et al. Identification of key lipid metabolites during metabolic dysregulation in the diabetic retinopathy disease mouse model and efficacy of Keluoxin capsule using an UHPLC-MS-based non-targeted lipidomics approach[J]. RSC Adv, 2021, 11(10): 5491-5505. DOI: 10.1039/d0ra00343c. |
28. | Kong L, Sun Y, Sun H, et al. Chinmedomics strategy for elucidating the pharmacological effects and discovering bioactive compounds from keluoxin against diabetic retinopathy[J/OL]. Front Pharmacol, 2022, 13: 728256[2022-03-31]. https://pubmed.ncbi.nlm.nih.gov/35431942/. DOI: 10.3389/fphar.2022.728256. |
29. | Zhou Y, Tan W, Zou J, et al. Metabolomics analyses of mouse retinas in oxygen-induced retinopathy[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(10): 9[2021-08-02]. https://pubmed.ncbi.nlm.nih.gov/34374743/. DOI: 10.1167/iovs.62.10.9. |
30. | Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects[J/OL]. Adv Sci (Weinh), 2020, 7(22): 2001714[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/33240754/. DOI: 10.1002/advs.202001714. |
31. | Zuo J, Lan Y, Hu H, et al. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1) : e001443[2021-02-09]. https://pubmed.ncbi.nlm.nih.gov/33593748/. DOI: 10.1136/bmjdrc-2020-001443. |
32. | Li X, Luo X, Lu X, et al. Metabolomics study of diabetic retinopathy using gas chromatography-mass spectrometry: a comparison of stages and subtypes diagnosed by western and chinese medicine[J]. Mol Biosyst, 2011, 7(7): 2228-2237. DOI: 10.1039/c0mb00341g. |
33. | Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology[J]. Nature, 2014, 510(7503): 92-101. DOI: 10.1038/nature13479. |
34. | Levy BD, Clish CB, Schmidt B, et al. Lipid mediator class switching during acute inflammation: signals in resolution[J]. Nat Immunol, 2001, 2(7): 612-619. DOI: 10.1038/89759. |
35. | Ferrucci L, Cherubini A, Bandinelli S, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers[J]. J Clin Endocrinol Metab, 2006, 91(2): 439-446. DOI: 10.1210/jc.2005-1303. |
36. | Sala-Vila A, Díaz-López A, Valls-Pedret C, et al. Dietary marine ω-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes: prospective investigation from the predimed trial[J]. JAMA Ophthalmol, 2016, 134(10): 1142-1149. DOI: 10.1001/jamaophthalmol.2016.2906. |
37. | Chew EY. Dietary intake of omega-3 fatty acids from fish and risk of diabetic retinopathy[J]. JAMA, 2017, 317(21): 2226-2227. DOI: 10.1001/jama.2017.1926. |
38. | Zhang J, Li H, Deng Q, et al. Correlation between omega-3 intake and the incidence of diabetic retinopathy based on nhanes from 2005 to 2008[J]. Acta Diabetol, 2024, 61(8): 997-1005. DOI: 10.1007/s00592-024-02267-4. |
39. | Wang L, Chen K, Liu K, et al. Dha inhibited ages-induced retinal microglia activation via suppression of the PPARγ/NF-kB pathway and reduction of signal transducers in the AGES/RAGE axis recruitment into lipid rafts[J]. Neurochem Res, 2015, 40(4): 713-722. DOI: 10.1007/s11064-015-1517-1. |
40. | Opreanu M, Lydic TA, Reid GE, et al. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3253-3263. DOI: 10.1167/iovs.09-4731. |
41. | Tikhonenko M, Lydic TA, Opreanu M, et al. N-3 polyunsaturated fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function[J/OL]. PLoS One, 2013, 8(1): e55177[2013-01-29]. https://pubmed.ncbi.nlm.nih.gov/23383097/. DOI: 10.1371/journal.pone.0055177. |
42. | Dutot M, de la Tourrette V, Fagon R, et al. New approach to modulate retinal cellular toxic effects of high glucose using marine EPA and DHA[J/OL]. Nutr Metab (Lond), 2011, 8: 39[2011-01-16]. https://pubmed.ncbi.nlm.nih.gov/21679392/. DOI: 10.1186/1743-7075-8-39. |
43. | Yin Y, Chen F, Wang W, et al. Resolvin d1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: possible involvement of NLRP3 inflammasome and NF-κB signaling pathway[J]. Mol Vis, 2017, 23: 242-250. |
44. | Lafuente M, Ortín L, Argente M, et al. Three-year outcomes in a randomized single-blind controlled trial of intravitreal ranibizumab and oral supplementation with docosahexaenoic acid and antioxidants for diabetic macular edema[J]. Retina, 2019, 39(6): 1083-1090. DOI: 10.1097/IAE.0000000000002114. |
45. | Mukherjee PK, Marcheselli VL, Serhan CN, et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress[J]. Proc Natl Acad Sci USA, 2004, 101(22): 8491-8496. DOI: 10.1073/pnas.0402531101. |
46. | Shen J, Zhang L, Wang Y, et al. Beneficial actions of essential fatty acids in streptozotocin-induced type 1 diabetes mellitus[J/OL]. Front Nutr, 2022, 9: 890277[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/35669071/. DOI: 10.3389/fnut.2022.890277. |
47. | Hadjighassem M, Kamalidehghan B, Shekarriz N, et al. Oral consumption of α-linolenic acid increases serum bdnf levels in healthy adult humans[J/OL]. Nutr J, 2015, 14: 20[2015-02-26]. https://pubmed.ncbi.nlm.nih.gov/25889793/. DOI: 10.1186/s12937-015-0012-5. |
48. | Trebble T, Arden NK, Stroud MA, et al. Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation[J]. Br J Nutr, 2003, 90(2): 405-412. DOI: 10.1079/bjn2003892. |
49. | Baumann KH, Hessel F, Larass I, et al. Dietary omega-3, omega-6, and omega-9 unsaturated fatty acids and growth factor and cytokine gene expression in unstimulated and stimulated monocytes. A randomized volunteer study[J]. Arterioscler Thromb Vasc Biol, 1999, 19(1): 59-66. DOI: 10.1161/01.atv.19.1.59. |
50. | Goldman DW, Pickett WC, Goetzl EJ. Human neutrophil chemotactic and degranulating activities of leukotriene b5 (LTB5) derived from eicosapentaenoic acid[J]. Biochem Biophys Res Commun, 1983, 117(1): 282-288. DOI: 10.1016/0006-291x(83)91572-3. |
51. | Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids[J]. Prog Lipid Res, 2008, 47(2): 147-155. DOI: 10.1016/j.plipres.2007.12.004. |
52. | Suzumura A, Kaneko H, Funahashi Y, et al. N-3 fatty acid and its metabolite 18-HEPE ameliorate retinal neuronal cell dysfunction by enhancing müller BDNF in diabetic retinopathy[J]. Diabetes, 2020, 69(4): 724-735. DOI: 10.2337/db19-0550. |
53. | Miles EA, Allen E, Calder PC. In vitro effects of eicosanoids derived from different 20-carbon fatty acids on production of monocyte-derived cytokines in human whole blood cultures[J]. Cytokine, 2002, 20(5): 215-223. DOI: 10.1006/cyto.2002.2007. |
54. | Schwartzman ML, Iserovich P, Gotlinger K, et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy[J]. Diabetes, 2010, 59(7): 1780-1788. DOI: 10.2337/db10-0110. |
55. | Gubitosi-Klug RA, Talahalli R, Du Y, et al. 5-lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy[J]. Diabetes, 2008, 57(5): 1387-1393. DOI: 10.2337/db07-1217. |
56. | Chen S, Qian Y, Lin Q, et al. Increased serum 12-hydroxyeicosatetraenoic acid levels are correlated with an increased risk of diabetic retinopathy in both children and adults with diabetes[J]. Acta Diabetol, 2022, 59(11): 1505-1513. DOI: 10.1007/s00592-022-01951-7. |
57. | Moustafa M, Khalil A, Darwish NHE, et al. 12-HETE activates müller glial cells: The potential role of GPR31 and miR-29[J/OL]. Prostaglandins Other Lipid Mediat, 2023, 171: 106805[2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/38141777. DOI: 10.1016/j.prostaglandins.2023.106805. |
58. | Elmasry K, Ibrahim AS, Saleh H, et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J]. Diabetologia, 2018, 61(5): 1220-1232. DOI: 10.1007/s00125-018-4560-z. |
59. | Ibrahim AS, Saleh H, El-Shafey M, et al. Targeting of 12/15-lipoxygenase in retinal endothelial cells, but not in monocytes/macrophages, attenuates high glucose-induced retinal leukostasis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(6): 636-645. DOI: 10.1016/j.bbalip.2017.03.010. |
60. | Othman A, Ahmad S, Megyerdi S, et al. 12/15-lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of nadph oxidase[J/OL]. PLoS One, 2013, 8(2): e57254[2013-02-20]. https://pubmed.ncbi.nlm.nih.gov/23437353/. DOI: 10.1371/journal.pone.0057254. |
61. | Zhang Y, Hoda MN, Zheng X, et al. Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(6): 693-703. DOI: 10.1152/ajpregu.00422.2013. |
62. | Shen JH, Ma Q, Shen SR, et al. Effect of α-linolenic acid on streptozotocin-induced diabetic retinopathy indices in vivo[J]. Arch Med Res, 2013, 44(7): 514-520. DOI: 10.1016/j.arcmed.2013.09.010. |
63. | Friedrichs B, Toborek M, Hennig B, et al. 13-HPODE and 13-HODE modulate cytokine-induced expression of endothelial cell adhesion molecules differently[J]. Biofactors, 1999, 9(1): 61-72. DOI: 10.1002/biof.5520090108. |
64. | Pischon T, Hankinson SE, Hotamisligil GS, et al. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women[J]. Circulation, 2003, 108(2): 155-160. DOI: 10.1161/01.CIR.0000079224.46084.C2. |
65. | Johnson GH, Fritsche K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials[J/OL]. J Acad Nutr Diet, 2012, 112(7): 1029-1041[2012-06-21]. https://pubmed.ncbi.nlm.nih.gov/22889633/. DOI: 10.1016/j.jand.2012.03.029. |
66. | Youngblood H, Robinson R, Sharma A, et al. Proteomic biomarkers of retinal inflammation in diabetic retinopathy[J/OL]. Int J Mol, 2019, 20(19): 4755[2019-09-25]. https://pubmed.ncbi.nlm.nih.gov/31557880/. DOI: 10.3390/ijms20194755. |
67. | Sharma A, Valle ML, Beveridge C, et al. Unraveling the role of genetics in the pathogenesis of diabetic retinopathy[J]. Eye (Lond), 2019, 33(4): 534-541. DOI: 10.1038/s41433-019-0337-y. |
- 1. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
- 2. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Lancet, 2010, 376(9735): 124-136. DOI: 10.1016/S0140-6736(09)62124-3.
- 3. Browning DJ, Stewart MW, Lee C. Diabetic macular edema: evidence-based management[J]. Indian J Ophthalmol, 2018, 66(12): 1736-1750. DOI: 10.4103/ijo.IJO_1240_18.
- 4. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine[J]. Nat Rev Drug Discov, 2016, 15(7): 473-484. DOI: 10.1038/nrd.2016.32.
- 5. Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(12): 1450-1452. DOI: 10.1096/fj.03-1476fje.
- 6. Ahsan H. Diabetic retinopathy--biomolecules and multiple pathophysiology[J]. Diabetes Metab Syndr, 2015, 9(1): 51-54. DOI: 10.1016/j.dsx.2014.09.011.
- 7. Van Hove I, Hu TT, Beets K, et al. Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration[J/OL]. Prog Retin Eye Res, 2021, 85: 100966[2021-03-26]. https://pubmed.ncbi.nlm.nih.gov/33775825/. DOI: 10.1016/j.preteyeres.2021.100966.
- 8. Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy[J]. Arch Ophthalmol, 2008, 126(2): 227-232. DOI: 10.1001/archophthalmol.2007.65.
- 9. Ibrahim AS, El-Remessy AB, Matragoon S, et al. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes[J]. Diabetes, 2011, 60(4): 1122-1133. DOI: 10.2337/db10-1160.
- 10. Xu H, Chen M. Diabetic retinopathy and dysregulated innate immunity[J]. Vision Res, 2017, 139: 39-46. DOI: 10.1016/j.visres.2017.04.013.
- 11. Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain[J]. Metab Brain Dis, 2014, 29(3): 747-761. DOI: 10.1007/s11011-014-9562-z.
- 12. Dietzen NM, Arcario MJ, Chen LJ, et al. Polyunsaturated fatty acids inhibit a pentameric ligand-gated ion channel through one of two binding sites[J/OL]. Elife, 2022, 11: e74306[2022-01-04]. https://pubmed.ncbi.nlm.nih.gov/34982031/. DOI: 10.7554/eLife.74306.
- 13. Bloch W, Diel P, Zacher J. Ion channel regulation in endothelial function: the key role of dietary polyunsaturated fatty acids for TRPV4 activity[J]. Cardiovasc Res, 2021, 117(12): 2409-2410. DOI: 10.1093/cvr/cvab097.
- 14. Liput KP, Lepczyński A, Ogłuszka M, et al. Effects of dietary n-3 and n-6 polyunsaturated fatty acids in inflammation and cancerogenesis[J/OL]. Int J Mol Sci, 2021, 22(13): 6965[2021-01-28]. https://pubmed.ncbi.nlm.nih.gov/34203461/. DOI: 10.3390/ijms22136965.
- 15. Wang Z, Tang J, Jin E, et al. Metabolomic comparison followed by cross-validation of enzyme-linked immunosorbent assay to reveal potential biomarkers of diabetic retinopathy in chinese with type 2 diabetes[J/OL]. Front Endocrinol (Lausanne), 2022, 13: 986303[2022-09-08]. https://pubmed.ncbi.nlm.nih.gov/36157454/. DOI: 10.3389/fendo.2022.986303.
- 16. Wang Z, Tang J, Jin E, et al. Serum untargeted metabolomics reveal potential biomarkers of progression of diabetic retinopathy in asians[J/OL]. Front Mol Biosci, 2022, 9: 871291[2022-01-09]. https://pubmed.ncbi.nlm.nih.gov/35755823/. DOI: 10.3389/fmolb.2022.871291.
- 17. Guo C, Jiang D, Xu Y, et al. High-coverage serum metabolomics reveals metabolic pathway dysregulation in diabetic retinopathy: a propensity score-matched study[J/OL]. Front Mol Biosci, 2022, 9: 822647[2022-03-17]. https://pubmed.ncbi.nlm.nih.gov/35372500/. DOI: 10.3389/fmolb.2022.822647.
- 18. Alkhalaf A, Kleefstra N, Groenier KH, et al. Effect of benfotiamine on advanced glycation endproducts and markers of endothelial dysfunction and inflammation in diabetic nephropathy[J/OL]. PLoS One, 2012, 7(7): e40427[2012-07-06]. https://pubmed.ncbi.nlm.nih.gov/22792314/. DOI: 10.1371/journal.pone.0040427.
- 19. Abdelrahman AA, Bunch KL, Sandow PV, et al. Systemic administration of pegylated arginase-1 attenuates the progression of diabetic retinopathy[J/OL]. Cells, 2022, 11(18): 2890[2022-09-16]. https://pubmed.ncbi.nlm.nih.gov/36139465/. DOI: 10.3390/cells11182890.
- 20. Zhao T, Wang Y, Guo X, et al. Altered oxylipin levels in human vitreous indicate imbalance in pro-/anti-inflammatory homeostasis in proliferative diabetic retinopathy[J/OL]. Exp Eye Res, 2022, 214: 108799[2021-10-21]. https://pubmed.ncbi.nlm.nih.gov/34687725/. DOI: 10.1016/j.exer.2021.108799.
- 21. Chu KO, Chan TI, Chan KP, et al. Untargeted metabolomic analysis of aqueous humor in diabetic macular edema[J]. Mol Vis, 2022, 28: 230-244.
- 22. Wen X, Ng TK, Liu Q, et al. Azelaic acid and guanosine in tears improve discrimination of proliferative from non-proliferative diabetic retinopathy in type-2 diabetes patients: a tear metabolomics study[J/OL]. Heliyon, 2023, 9(5): e16109[2023-05-18]. https://pubmed.ncbi.nlm.nih.gov/37305454/. DOI: 10.1016/j.heliyon.2023.e16109.
- 23. Zhou Z, Zheng Z, Xiong X, et al. Gut microbiota composition and fecal metabolic profiling in patients with diabetic retinopathy[J/OL]. Front Cell Dev Biol, 2021, 9: 732204[2021-10-15]. https://pubmed.ncbi.nlm.nih.gov/34722512/. DOI: 10.3389/fcell.2021.732204.
- 24. Ye P, Zhang X, Xu Y, et al. Alterations of the gut microbiome and metabolome in patients with proliferative diabetic retinopathy[J/OL]. Front Microbiol, 2021, 12: 667632[2021-09-18]. https://pubmed.ncbi.nlm.nih.gov/34566901/. DOI: 10.3389/fmicb.2021.667632.
- 25. Fort PE, Rajendiran TM, Soni T, et al. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy[J/OL]. JCI insight, 2021, 6(19): e152109 [2021-10-08]. https://pubmed.ncbi.nlm.nih.gov/34437304/. DOI: 10.1172/jci.insight.152109.
- 26. Sas KM, Lin J, Rajendiran TM, et al. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model[J]. J Lipid Res, 2018, 59(2): 173-183. DOI: 10.1194/jlr.M077222.
- 27. Ge N, Kong L, Zhang AH, et al. Identification of key lipid metabolites during metabolic dysregulation in the diabetic retinopathy disease mouse model and efficacy of Keluoxin capsule using an UHPLC-MS-based non-targeted lipidomics approach[J]. RSC Adv, 2021, 11(10): 5491-5505. DOI: 10.1039/d0ra00343c.
- 28. Kong L, Sun Y, Sun H, et al. Chinmedomics strategy for elucidating the pharmacological effects and discovering bioactive compounds from keluoxin against diabetic retinopathy[J/OL]. Front Pharmacol, 2022, 13: 728256[2022-03-31]. https://pubmed.ncbi.nlm.nih.gov/35431942/. DOI: 10.3389/fphar.2022.728256.
- 29. Zhou Y, Tan W, Zou J, et al. Metabolomics analyses of mouse retinas in oxygen-induced retinopathy[J/OL]. Invest Ophthalmol Vis Sci, 2021, 62(10): 9[2021-08-02]. https://pubmed.ncbi.nlm.nih.gov/34374743/. DOI: 10.1167/iovs.62.10.9.
- 30. Xuan Q, Ouyang Y, Wang Y, et al. Multiplatform metabolomics reveals novel serum metabolite biomarkers in diabetic retinopathy subjects[J/OL]. Adv Sci (Weinh), 2020, 7(22): 2001714[2020-10-01]. https://pubmed.ncbi.nlm.nih.gov/33240754/. DOI: 10.1002/advs.202001714.
- 31. Zuo J, Lan Y, Hu H, et al. Metabolomics-based multidimensional network biomarkers for diabetic retinopathy identification in patients with type 2 diabetes mellitus[J/OL]. BMJ Open Diabetes Res Care, 2021, 9(1) : e001443[2021-02-09]. https://pubmed.ncbi.nlm.nih.gov/33593748/. DOI: 10.1136/bmjdrc-2020-001443.
- 32. Li X, Luo X, Lu X, et al. Metabolomics study of diabetic retinopathy using gas chromatography-mass spectrometry: a comparison of stages and subtypes diagnosed by western and chinese medicine[J]. Mol Biosyst, 2011, 7(7): 2228-2237. DOI: 10.1039/c0mb00341g.
- 33. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology[J]. Nature, 2014, 510(7503): 92-101. DOI: 10.1038/nature13479.
- 34. Levy BD, Clish CB, Schmidt B, et al. Lipid mediator class switching during acute inflammation: signals in resolution[J]. Nat Immunol, 2001, 2(7): 612-619. DOI: 10.1038/89759.
- 35. Ferrucci L, Cherubini A, Bandinelli S, et al. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers[J]. J Clin Endocrinol Metab, 2006, 91(2): 439-446. DOI: 10.1210/jc.2005-1303.
- 36. Sala-Vila A, Díaz-López A, Valls-Pedret C, et al. Dietary marine ω-3 fatty acids and incident sight-threatening retinopathy in middle-aged and older individuals with type 2 diabetes: prospective investigation from the predimed trial[J]. JAMA Ophthalmol, 2016, 134(10): 1142-1149. DOI: 10.1001/jamaophthalmol.2016.2906.
- 37. Chew EY. Dietary intake of omega-3 fatty acids from fish and risk of diabetic retinopathy[J]. JAMA, 2017, 317(21): 2226-2227. DOI: 10.1001/jama.2017.1926.
- 38. Zhang J, Li H, Deng Q, et al. Correlation between omega-3 intake and the incidence of diabetic retinopathy based on nhanes from 2005 to 2008[J]. Acta Diabetol, 2024, 61(8): 997-1005. DOI: 10.1007/s00592-024-02267-4.
- 39. Wang L, Chen K, Liu K, et al. Dha inhibited ages-induced retinal microglia activation via suppression of the PPARγ/NF-kB pathway and reduction of signal transducers in the AGES/RAGE axis recruitment into lipid rafts[J]. Neurochem Res, 2015, 40(4): 713-722. DOI: 10.1007/s11064-015-1517-1.
- 40. Opreanu M, Lydic TA, Reid GE, et al. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3253-3263. DOI: 10.1167/iovs.09-4731.
- 41. Tikhonenko M, Lydic TA, Opreanu M, et al. N-3 polyunsaturated fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function[J/OL]. PLoS One, 2013, 8(1): e55177[2013-01-29]. https://pubmed.ncbi.nlm.nih.gov/23383097/. DOI: 10.1371/journal.pone.0055177.
- 42. Dutot M, de la Tourrette V, Fagon R, et al. New approach to modulate retinal cellular toxic effects of high glucose using marine EPA and DHA[J/OL]. Nutr Metab (Lond), 2011, 8: 39[2011-01-16]. https://pubmed.ncbi.nlm.nih.gov/21679392/. DOI: 10.1186/1743-7075-8-39.
- 43. Yin Y, Chen F, Wang W, et al. Resolvin d1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: possible involvement of NLRP3 inflammasome and NF-κB signaling pathway[J]. Mol Vis, 2017, 23: 242-250.
- 44. Lafuente M, Ortín L, Argente M, et al. Three-year outcomes in a randomized single-blind controlled trial of intravitreal ranibizumab and oral supplementation with docosahexaenoic acid and antioxidants for diabetic macular edema[J]. Retina, 2019, 39(6): 1083-1090. DOI: 10.1097/IAE.0000000000002114.
- 45. Mukherjee PK, Marcheselli VL, Serhan CN, et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress[J]. Proc Natl Acad Sci USA, 2004, 101(22): 8491-8496. DOI: 10.1073/pnas.0402531101.
- 46. Shen J, Zhang L, Wang Y, et al. Beneficial actions of essential fatty acids in streptozotocin-induced type 1 diabetes mellitus[J/OL]. Front Nutr, 2022, 9: 890277[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/35669071/. DOI: 10.3389/fnut.2022.890277.
- 47. Hadjighassem M, Kamalidehghan B, Shekarriz N, et al. Oral consumption of α-linolenic acid increases serum bdnf levels in healthy adult humans[J/OL]. Nutr J, 2015, 14: 20[2015-02-26]. https://pubmed.ncbi.nlm.nih.gov/25889793/. DOI: 10.1186/s12937-015-0012-5.
- 48. Trebble T, Arden NK, Stroud MA, et al. Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation[J]. Br J Nutr, 2003, 90(2): 405-412. DOI: 10.1079/bjn2003892.
- 49. Baumann KH, Hessel F, Larass I, et al. Dietary omega-3, omega-6, and omega-9 unsaturated fatty acids and growth factor and cytokine gene expression in unstimulated and stimulated monocytes. A randomized volunteer study[J]. Arterioscler Thromb Vasc Biol, 1999, 19(1): 59-66. DOI: 10.1161/01.atv.19.1.59.
- 50. Goldman DW, Pickett WC, Goetzl EJ. Human neutrophil chemotactic and degranulating activities of leukotriene b5 (LTB5) derived from eicosapentaenoic acid[J]. Biochem Biophys Res Commun, 1983, 117(1): 282-288. DOI: 10.1016/0006-291x(83)91572-3.
- 51. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids[J]. Prog Lipid Res, 2008, 47(2): 147-155. DOI: 10.1016/j.plipres.2007.12.004.
- 52. Suzumura A, Kaneko H, Funahashi Y, et al. N-3 fatty acid and its metabolite 18-HEPE ameliorate retinal neuronal cell dysfunction by enhancing müller BDNF in diabetic retinopathy[J]. Diabetes, 2020, 69(4): 724-735. DOI: 10.2337/db19-0550.
- 53. Miles EA, Allen E, Calder PC. In vitro effects of eicosanoids derived from different 20-carbon fatty acids on production of monocyte-derived cytokines in human whole blood cultures[J]. Cytokine, 2002, 20(5): 215-223. DOI: 10.1006/cyto.2002.2007.
- 54. Schwartzman ML, Iserovich P, Gotlinger K, et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy[J]. Diabetes, 2010, 59(7): 1780-1788. DOI: 10.2337/db10-0110.
- 55. Gubitosi-Klug RA, Talahalli R, Du Y, et al. 5-lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy[J]. Diabetes, 2008, 57(5): 1387-1393. DOI: 10.2337/db07-1217.
- 56. Chen S, Qian Y, Lin Q, et al. Increased serum 12-hydroxyeicosatetraenoic acid levels are correlated with an increased risk of diabetic retinopathy in both children and adults with diabetes[J]. Acta Diabetol, 2022, 59(11): 1505-1513. DOI: 10.1007/s00592-022-01951-7.
- 57. Moustafa M, Khalil A, Darwish NHE, et al. 12-HETE activates müller glial cells: The potential role of GPR31 and miR-29[J/OL]. Prostaglandins Other Lipid Mediat, 2023, 171: 106805[2023-12-22]. https://pubmed.ncbi.nlm.nih.gov/38141777. DOI: 10.1016/j.prostaglandins.2023.106805.
- 58. Elmasry K, Ibrahim AS, Saleh H, et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J]. Diabetologia, 2018, 61(5): 1220-1232. DOI: 10.1007/s00125-018-4560-z.
- 59. Ibrahim AS, Saleh H, El-Shafey M, et al. Targeting of 12/15-lipoxygenase in retinal endothelial cells, but not in monocytes/macrophages, attenuates high glucose-induced retinal leukostasis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017, 1862(6): 636-645. DOI: 10.1016/j.bbalip.2017.03.010.
- 60. Othman A, Ahmad S, Megyerdi S, et al. 12/15-lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: contribution of nadph oxidase[J/OL]. PLoS One, 2013, 8(2): e57254[2013-02-20]. https://pubmed.ncbi.nlm.nih.gov/23437353/. DOI: 10.1371/journal.pone.0057254.
- 61. Zhang Y, Hoda MN, Zheng X, et al. Combined therapy with COX-2 inhibitor and 20-HETE inhibitor reduces colon tumor growth and the adverse effects of ischemic stroke associated with COX-2 inhibition[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307(6): 693-703. DOI: 10.1152/ajpregu.00422.2013.
- 62. Shen JH, Ma Q, Shen SR, et al. Effect of α-linolenic acid on streptozotocin-induced diabetic retinopathy indices in vivo[J]. Arch Med Res, 2013, 44(7): 514-520. DOI: 10.1016/j.arcmed.2013.09.010.
- 63. Friedrichs B, Toborek M, Hennig B, et al. 13-HPODE and 13-HODE modulate cytokine-induced expression of endothelial cell adhesion molecules differently[J]. Biofactors, 1999, 9(1): 61-72. DOI: 10.1002/biof.5520090108.
- 64. Pischon T, Hankinson SE, Hotamisligil GS, et al. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women[J]. Circulation, 2003, 108(2): 155-160. DOI: 10.1161/01.CIR.0000079224.46084.C2.
- 65. Johnson GH, Fritsche K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials[J/OL]. J Acad Nutr Diet, 2012, 112(7): 1029-1041[2012-06-21]. https://pubmed.ncbi.nlm.nih.gov/22889633/. DOI: 10.1016/j.jand.2012.03.029.
- 66. Youngblood H, Robinson R, Sharma A, et al. Proteomic biomarkers of retinal inflammation in diabetic retinopathy[J/OL]. Int J Mol, 2019, 20(19): 4755[2019-09-25]. https://pubmed.ncbi.nlm.nih.gov/31557880/. DOI: 10.3390/ijms20194755.
- 67. Sharma A, Valle ML, Beveridge C, et al. Unraveling the role of genetics in the pathogenesis of diabetic retinopathy[J]. Eye (Lond), 2019, 33(4): 534-541. DOI: 10.1038/s41433-019-0337-y.