- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Ophthalmic Diseases, Shanghai Key Laboratory of Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China;
Inherited retinal degeneration (IRD) is a group of fundus diseases characterized by a high degree of genetic heterogeneity and clinical heterogeneity, and more than 300 genetic mutations have been identified in association with IRD. Dysregulation of the intracellular second messenger cyclic guanosine monophosphate (cGMP) plays an important role in the development of IRD. cGMP participates in phototransduction process in photoreceptors. Abnormally elevated cGMP over-activate protein kinase G and cyclic nucleotide-gated channel, causing protein phosphorylation and Ca2+ overload, respectively, and these two cGMP-dependent pathways may individually or collectively drive photoreceptor degenerative lesions and death; therefore, reducing cGMP synthesis and blocking downstream signaling can be considered as treatment strategies. Investigating the molecular mechanisms of cGMP dysregulation in photoreceptor degeneration may provide a more comprehensive picture of the pathogenesis of IRD, as well as ideas for finding new therapeutic targets and designing therapeutic programs.
Citation: Liu Zishi, Li Tong, Sun Xiaodong. Research progress of cyclic guanosine monophosphate in inherited retinal degeneration. Chinese Journal of Ocular Fundus Diseases, 2024, 40(11): 898-904. doi: 10.3760/cma.j.cn511434-20240701-00246 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Arango-Gonzalez B, Trifunovic D, Sahaboglu A, et al. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration[J/OL]. PLoS One, 2014, 9(11): e112142[2014-11-13]. https://www.ncbi.nlm.nih.gov/pubmed/25392995/. DOI: 10.1371/journal.pone.0112142. |
2. | Vighi E, Trifunovic D, Veiga-Crespo P, et al. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration[J/OL]. Proc Natl Acad Sci USA, 2018, 115(13): E2997-3006[2018-03-12]. https://www.ncbi.nlm.nih.gov/pubmed/29531030/. DOI: 10.1073/pnas.1718792115. |
3. | Paquet-Durand F, Marigo V, Ekstrom P. RD genes associated with high photoreceptor cGMP-levels (mini-review)[J]. Adv Exp Med Biol, 2019, 1185: 245-249. DOI: 10.1007/978-3-030-27378-1_40. |
4. | Friebe A, Sandner P, Schmidtko A. cGMP: a unique 2nd messenger molecule-recent developments in cGMP research and development[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(2): 287-302. DOI: 10.1007/s00210-019-01779-z. |
5. | Tucker CL, Woodcock SC, Kelsell RE, et al. Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy[J]. Proc Natl Acad Sci USA, 1999, 96(16): 9039-9044. DOI: 10.1073/pnas.96.16.9039. |
6. | Dell'orco D, Schmidt H, Mariani S, et al. Network-level analysis of light adaptation in rod cells under normal and altered conditions[J]. Mol Biosyst, 2009, 5(10): 1232-1246. DOI: 10.1039/b908123b. |
7. | Pugh EN Jr, Lamb TD. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors[J]. Vision Res, 1990, 30(12): 1923-1948. DOI: 10.1016/0042-6989(90)90013-b. |
8. | Ebrey T, Koutalos Y. Vertebrate photoreceptors[J]. Prog Retin Eye Res, 2001, 20(1): 49-94. DOI: 10.1016/s1350-9462(00)00014-8. |
9. | Hagins WA, Penn RD, Yoshikami S. Dark current and photocurrent in retinal rods[J]. Biophys J, 1970, 10(5): 380-412. DOI: 10.1016/S0006-3495(70)86308-1. |
10. | Den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms[J]. Prog Retin Eye Res, 2008, 27(4): 391-419. DOI: 10.1016/j.preteyeres.2008.05.003. |
11. | Gill JS, Georgiou M, Kalitzeos A, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy[J]. Br J Ophthalmol, 2019, 103(5): 711-720. DOI: 10.1136/bjophthalmol-2018-313278. |
12. | Sato M, Nakazawa M, Usui T, et al. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies[J]. Graefe's Arch Clin Exp Ophthalmol, 2005, 243(3): 235-242. DOI: 10.1007/s00417-004-1015-7. |
13. | Li Y, Wang H, Peng J, et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population[J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 1336-1343. DOI: 10.1167/iovs.08-2589. |
14. | Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa[J]. Lancet, 2006, 368(9549): 1795-1809. DOI: 10.1016/S0140-6736(06)69740-7. |
15. | Power M, Das S, Schutze K, et al. Cellular mechanisms of hereditary photoreceptor degeneration-focus on cGMP[J/OL]. Prog Retin Eye Res, 2020, 74: 100772[2019-07-30]. https://pubmed.ncbi.nlm.nih.gov/31374251/. DOI: 10.1016/j.preteyeres.2019.07.005. |
16. | Weisschuh N, Stingl K, Audo I, et al. Mutations in the gene PDE6C encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia[J]. Hum Mutat, 2018, 39(10): 1366-1371. DOI: 10.1002/humu.23606. |
17. | Kohl S, Coppieters F, Meire F, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia[J]. Am J Hum Genet, 2012, 91(3): 527-532. DOI: 10.1016/j.ajhg.2012.07.006. |
18. | Sohocki MM, Perrault I, Leroy BP, et al. Prevalence of AIPL1 mutations in inherited retinal degenerative disease[J]. Mol Genet Metab, 2000, 70(2): 142-150. DOI: 10.1006/mgme.2000.3001. |
19. | Méjécase C, Laurent-Coriat C, Mayer C, et al. Identification of a novel homozygous nonsense mutation confirms the implication of GNAT1 in rod-cone dystrophy[J/OL]. PLoS One, 2016, 11(12): e0168271[2016-12-15]. https://www.ncbi.nlm.nih.gov/pubmed/27977773/. DOI: 10.1371/journal.pone.0168271. |
20. | Carrigan M, Duignan E, Humphries P, et al. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration[J]. Br J Ophthalmol, 2016, 100(4): 495-500. DOI: 10.1136/bjophthalmol-2015-306939. |
21. | Felden J, Baumann B, Ali M, et al. Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene[J]. Hum Mutat, 2019, 40(8): 1145-1155. DOI: 10.1002/humu.23768. |
22. | Wissinger B, Gamer D, Jägle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders[J]. Am J Hum Genet, 2001, 69(4): 722-737. DOI: 10.1086/323613. |
23. | Mayer AK, Van Cauwenbergh C, Rother C, et al. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients[J]. Hum Mutat, 2017, 38(11): 1579-1591. DOI: 10.1002/humu.23311. |
24. | Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing[J]. J Med Genet, 2013, 50(10): 674-688. DOI: 10.1136/jmedgenet-2013-101558. |
25. | Manes G, Guillaumie T, Vos WL, et al. High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features[J]. Am J Ophthalmol, 2015, 159(2): 302-314. DOI: 10.1016/j.ajo.2014.10.033. |
26. | Peshenko IV, Olshevskaya EV, Savchenko AB, et al. Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors[J]. Biochemistry, 2011, 50(25): 5590-5600. DOI: 10.1021/bi200491b. |
27. | Liu Y, Ruoho AE, Rao VD, et al. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis[J]. Proc Natl Acad Sci USA, 1997, 94(25): 13414-13419. DOI: 10.1073/pnas.94.25.13414. |
28. | Peshenko IV, Dizhoor AM. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors[J]. J Biol Chem, 2004, 279(17): 16903-16906. DOI: 10.1074/jbc.C400065200. |
29. | Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal degeneration-3 protein promotes photoreceptor survival by suppressing activation of guanylyl cyclase rather than accelerating GMP recycling[J/OL]. J Biol Chem, 2021, 296: 100362[2021-02-02]. https://pubmed.ncbi.nlm.nih.gov/33539922/. DOI: 10.1016/j.jbc.2021.100362. |
30. | Sharon D, Wimberg H, Kinarty Y, et al. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D[J]. Prog Retin Eye Res, 2018, 63: 69-91. DOI: 10.1016/j.preteyeres.2017.10.003. |
31. | Wimberg H, Lev D, Yosovich K, et al. Photoreceptor guanylate cyclase (GUCY2D) mutations cause retinal dystrophies by severe malfunction of Ca2+-dependent cyclic GMP synthesis[J/OL]. Front Mol Neurosci, 2018, 11: 348[2018-09-25]. https://pubmed.ncbi.nlm.nih.gov/30319355/. DOI: 10.3389/fnmol.2018.00348. |
32. | Sato S, Peshenko IV, Olshevskaya EV, et al. GUCY2D cone-rod dystrophy-6 is a "phototransduction disease" triggered by abnormal calcium feedback on retinal membrane guanylyl cyclase 1[J]. J Neurosci, 2018, 38(12): 2990-3000. DOI: 10.1523/JNEUROSCI.2985-17.2018. |
33. | Olshevskaya EV, Calvert PD, Woodruff ML, et al. The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice[J]. J Neurosci, 2004, 24(27): 6078-6085. DOI: 10.1523/JNEUROSCI.0963-04.2004. |
34. | Peshenko IV, Cideciyan AV, Sumaroka A, et al. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration[J]. J Biol Chem, 2019, 294(10): 3476-3488. DOI: 10.1074/jbc.RA118.006180. |
35. | Peshenko IV, Olshevskaya EV, Dizhoor AM. Functional study and mapping sites for interaction with the target enzyme in retinal degeneration 3 (RD3) protein[J]. J Biol Chem, 2016, 291(37): 19713-19723. DOI: 10.1074/jbc.M116.742288. |
36. | Aguilà M, Bevilacqua D, Mcculley C, et al. Hsp90 inhibition protects against inherited retinal degeneration[J]. Hum Mol Genet, 2014, 23(8): 2164-2175. DOI: 10.1093/hmg/ddt613. |
37. | Gopalakrishna KN, Boyd K, Yadav RP, et al. Aryl hydrocarbon receptor-interacting protein-like 1 is an obligate chaperone of phosphodiesterase 6 and is assisted by the gamma-subunit of its client[J]. J Biol Chem, 2016, 291(31): 16282-16291. DOI: 10.1074/jbc.M116.737593. |
38. | Srivastava D, Yadav RP, Singh S, et al. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1[J]. Structure, 2023, 31(3): 309-317. DOI: 10.1016/j.str.2022.12.014. |
39. | Smith SO. Molecular mechanism of rhodopsin photoactivation[J]. Biophys J, 2009, 96(3): 87. DOI: 10.1016/j.bpj.2008.12.3587. |
40. | Farber DB, Lolley RN. Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina[J]. Science, 1974, 186(4162): 449-451. DOI: 10.1126/science.186.4162.449. |
41. | Gargini C, Terzibasi E, Mazzoni F, et al. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study[J]. J Comp Neurol, 2007, 500(2): 222-238. DOI: 10.1002/cne.21144. |
42. | Wang T, Reingruber J, Woodruff ML, et al. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx[J]. J Biol Chem, 2018, 293(40): 15332-15346. DOI: 10.1074/jbc.RA118.004459. |
43. | Sothilingam V, Garcia Garrido M, Jiao K, et al. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype[J]. Hum Mol Genet, 2015, 24(19): 5486-5499. DOI: 10.1093/hmg/ddv275. |
44. | Gal A, Orth U, Baehr W, et al. Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness[J]. Nat Genet, 1994, 7(1): 64-68. DOI: 10.1038/ng0594-64. |
45. | Tsang SH, Woodruff ML, Jun L, et al. Transgenic mice carrying the H258N mutation in the gene encoding the beta-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness[J]. Hum Mutat, 2007, 28(3): 243-254. DOI: 10.1002/humu.20425. |
46. | Thiadens AA, den Hollander AI, Roosing S, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders[J]. Am J Hum Genet, 2009, 85(2): 240-247. DOI: 10.1016/j.ajhg.2009.06.016. |
47. | Ramamurthy V, Niemi GA, Reh TA, et al. Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase[J]. Proc Natl Acad Sci USA, 2004, 101(38): 13897-13902. DOI: 10.1073/pnas.0404197101. |
48. | Kohl S, Baumann B, Rosenberg T, et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia[J]. Am J Hum Genet, 2002, 71(2): 422-425. DOI: 10.1086/341835. |
49. | Biel M, Michalakis S. Cyclic nucleotide-gated channels[J]. Handb Exp Pharmacol, 2009, 1(191): 111-136. DOI: 10.1007/978-3-540-68964-5_7. |
50. | Michalakis S, Becirovic E, Biel M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy[J]. Int J Mol Sci, 2018, 19(3): 749. DOI: 10.3390/ijms19030749. |
51. | Kandaswamy S, Zobel L, John B, et al. Mutations within the cGMP-binding domain of CNGA1 causing autosomal recessive retinitis pigmentosa in human and animal model[J]. Cell Death Discov, 2022, 8(1): 387. DOI: 10.1038/s41420-022-01185-0. |
52. | Radojevic B, Jones K, Klein M, et al. Variable expressivity in patients with autosomal recessive retinitis pigmentosa associated with the gene CNGB1[J]. Ophthalmic Genet, 2021, 42(1): 15-22. DOI: 10.1080/13816810.2020.1832532. |
53. | Wang T, Tsang SH, Chen J. Two pathways of rod photoreceptor cell death induced by elevated cGMP[J]. Hum Mol Genet, 2017, 26(12): 2299-2306. DOI: 10.1093/hmg/ddx121. |
54. | Xu J, Morris L, Thapa A, et al. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function[J]. J Neurosci, 2013, 33(37): 14939-14948. DOI: 10.1523/JNEUROSCI.0909-13.2013. |
55. | Paquet-Durand F, Hauck SM, Van Veen T, et al. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models[J]. J Neurochem, 2009, 108(3): 796-810. DOI: 10.1111/j.1471-4159.2008.05822.x. |
56. | Thapa A, Morris L, Xu J, et al. Endoplasmic reticulum stress-associated cone photoreceptor degeneration in cyclic nucleotide-gated channel deficiency[J]. J Biol Chem, 2012, 287(22): 18018-18029. DOI: 10.1074/jbc.M112.342220. |
57. | Ma H, Butler MR, Thapa A, et al. cGMP/protein kinase G signaling suppresses inositol 1, 4, 5-trisphosphate receptor phosphorylation and promotes endoplasmic reticulum stress in photoreceptors of cyclic nucleotide-gated channel-deficient mice[J]. J Biol Chem, 2015, 290(34): 20880-20892. DOI: 10.1074/jbc.M115.641159. |
58. | Makino CL, Wen XH, Olshevskaya EV, et al. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice[J/OL]. PLoS One, 2012, 7(10): e47637[2012-10-17]. https://pubmed.ncbi.nlm.nih.gov/23082185/. DOI: 10.1371/journal.pone.0047637. |
59. | Butler MR, Ma H, Yang F, et al. Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency[J]. J Biol Chem, 2017, 292(27): 11189-11205. DOI: 10.1074/jbc.M117.782326. |
60. | Haidara K, Marion M, Gascon-Barre M, et al. Implication of caspases and subcellular compartments in tert-butylhydroperoxide induced apoptosis[J]. Toxicol Appl Pharmacol, 2008, 229(1): 65-76. DOI: 10.1016/j.taap.2008.01.010. |
61. | Sancho-Pelluz J, Alavi MV, Sahaboglu A, et al. Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse[J/OL]. Cell Death Dis, 2010, 1(2): e24[2010-02-11]. https://pubmed.ncbi.nlm.nih.gov/21364632/. DOI: 10.1038/cddis.2010.4. |
62. | Comitato A, Di Salvo MT, Turchiano G, et al. Dominant and recessive mutations in rhodopsin activate different cell death pathways[J]. Hum Mol Genet, 2016, 25(13): 2801-2812. DOI: 10.1093/hmg/ddw137. |
63. | Vu JT, Wang E, Wu J, et al. Calpains as mechanistic drivers and therapeutic targets for ocular disease[J]. Trends Mol Med, 2022, 28(8): 644-661. DOI: 10.1016/j.molmed.2022.05.007. |
64. | Tosi J, Davis RJ, Wang NK, et al. shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa[J]. J Cell Mol Med, 2011, 15(8): 1778-1787. DOI: 10.1111/j.1582-4934.2010.01201.x. |
65. | Power MJ, Rogerson LE, Schubert T, et al. Systematic spatiotemporal mapping reveals divergent cell death pathways in three mouse models of hereditary retinal degeneration[J]. J Comp Neurol, 2020, 528(7): 1113-1139. DOI: 10.1002/cne.24807. |
66. | Garger A, Richard EA, Lisman JE. Inhibitors of guanylate cyclase inhibit phototransduction in limulus ventral photoreceptors[J]. Vis Neurosci, 2001, 18(4): 625-632. DOI: 10.1017/s0952523801184129. |
67. | Allison AC, Kowalski WJ, Muller CD, et al. Mechanisms of action of mycophenolic acid[J]. Ann N Y Acad Sci, 1993, 696: 63-87. DOI: 10.1111/j.1749-6632.1993.tb17143.x. |
68. | Yang P, Lockard R, Titus H, et al. Suppression of cGMP-dependent photoreceptor cytotoxicity with mycophenolate is neuroprotective in murine models of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 25. DOI: 10.1167/iovs.61.10.25. |
69. | Tolone A, Belhadj S, Rentsch A, et al. The cGMP pathway and inherited photoreceptor degeneration: targets, compounds, and biomarkers[J]. Genes (Basel), 2019, 10(6): 453. DOI: 10.3390/genes10060453. |
70. | Butt E, Van Bemmelen M, Fischer L, et al. Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3', 5'-monophosphorothioates[J]. FEBS Lett, 1990, 263(1): 47-50. DOI: 10.1016/0014-5793(90)80702-k. |
71. | Wei JY, Cohen ED, Genieser HG, et al. Substituted cGMP analogs can act as selective agonists of the rod photoreceptor cGMP-gated cation channel[J]. J Mol Neurosci, 1998, 10(1): 53-64. DOI: 10.1007/BF02737085. |
72. | Burkhardt M, Glazova M, Gambaryan S, et al. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells[J]. J Biol Chem, 2000, 275(43): 33536-33541. DOI: 10.1074/jbc.M005670200. |
73. | Sung YJ, Sofoluke N, Nkamany M, et al. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain[J]. Pain, 2017, 158(5): 822-832. DOI: 10.1097/j.pain.0000000000000832. |
- 1. Arango-Gonzalez B, Trifunovic D, Sahaboglu A, et al. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration[J/OL]. PLoS One, 2014, 9(11): e112142[2014-11-13]. https://www.ncbi.nlm.nih.gov/pubmed/25392995/. DOI: 10.1371/journal.pone.0112142.
- 2. Vighi E, Trifunovic D, Veiga-Crespo P, et al. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration[J/OL]. Proc Natl Acad Sci USA, 2018, 115(13): E2997-3006[2018-03-12]. https://www.ncbi.nlm.nih.gov/pubmed/29531030/. DOI: 10.1073/pnas.1718792115.
- 3. Paquet-Durand F, Marigo V, Ekstrom P. RD genes associated with high photoreceptor cGMP-levels (mini-review)[J]. Adv Exp Med Biol, 2019, 1185: 245-249. DOI: 10.1007/978-3-030-27378-1_40.
- 4. Friebe A, Sandner P, Schmidtko A. cGMP: a unique 2nd messenger molecule-recent developments in cGMP research and development[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(2): 287-302. DOI: 10.1007/s00210-019-01779-z.
- 5. Tucker CL, Woodcock SC, Kelsell RE, et al. Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy[J]. Proc Natl Acad Sci USA, 1999, 96(16): 9039-9044. DOI: 10.1073/pnas.96.16.9039.
- 6. Dell'orco D, Schmidt H, Mariani S, et al. Network-level analysis of light adaptation in rod cells under normal and altered conditions[J]. Mol Biosyst, 2009, 5(10): 1232-1246. DOI: 10.1039/b908123b.
- 7. Pugh EN Jr, Lamb TD. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors[J]. Vision Res, 1990, 30(12): 1923-1948. DOI: 10.1016/0042-6989(90)90013-b.
- 8. Ebrey T, Koutalos Y. Vertebrate photoreceptors[J]. Prog Retin Eye Res, 2001, 20(1): 49-94. DOI: 10.1016/s1350-9462(00)00014-8.
- 9. Hagins WA, Penn RD, Yoshikami S. Dark current and photocurrent in retinal rods[J]. Biophys J, 1970, 10(5): 380-412. DOI: 10.1016/S0006-3495(70)86308-1.
- 10. Den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms[J]. Prog Retin Eye Res, 2008, 27(4): 391-419. DOI: 10.1016/j.preteyeres.2008.05.003.
- 11. Gill JS, Georgiou M, Kalitzeos A, et al. Progressive cone and cone-rod dystrophies: clinical features, molecular genetics and prospects for therapy[J]. Br J Ophthalmol, 2019, 103(5): 711-720. DOI: 10.1136/bjophthalmol-2018-313278.
- 12. Sato M, Nakazawa M, Usui T, et al. Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies[J]. Graefe's Arch Clin Exp Ophthalmol, 2005, 243(3): 235-242. DOI: 10.1007/s00417-004-1015-7.
- 13. Li Y, Wang H, Peng J, et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population[J]. Invest Ophthalmol Vis Sci, 2009, 50(3): 1336-1343. DOI: 10.1167/iovs.08-2589.
- 14. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa[J]. Lancet, 2006, 368(9549): 1795-1809. DOI: 10.1016/S0140-6736(06)69740-7.
- 15. Power M, Das S, Schutze K, et al. Cellular mechanisms of hereditary photoreceptor degeneration-focus on cGMP[J/OL]. Prog Retin Eye Res, 2020, 74: 100772[2019-07-30]. https://pubmed.ncbi.nlm.nih.gov/31374251/. DOI: 10.1016/j.preteyeres.2019.07.005.
- 16. Weisschuh N, Stingl K, Audo I, et al. Mutations in the gene PDE6C encoding the catalytic subunit of the cone photoreceptor phosphodiesterase in patients with achromatopsia[J]. Hum Mutat, 2018, 39(10): 1366-1371. DOI: 10.1002/humu.23606.
- 17. Kohl S, Coppieters F, Meire F, et al. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia[J]. Am J Hum Genet, 2012, 91(3): 527-532. DOI: 10.1016/j.ajhg.2012.07.006.
- 18. Sohocki MM, Perrault I, Leroy BP, et al. Prevalence of AIPL1 mutations in inherited retinal degenerative disease[J]. Mol Genet Metab, 2000, 70(2): 142-150. DOI: 10.1006/mgme.2000.3001.
- 19. Méjécase C, Laurent-Coriat C, Mayer C, et al. Identification of a novel homozygous nonsense mutation confirms the implication of GNAT1 in rod-cone dystrophy[J/OL]. PLoS One, 2016, 11(12): e0168271[2016-12-15]. https://www.ncbi.nlm.nih.gov/pubmed/27977773/. DOI: 10.1371/journal.pone.0168271.
- 20. Carrigan M, Duignan E, Humphries P, et al. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration[J]. Br J Ophthalmol, 2016, 100(4): 495-500. DOI: 10.1136/bjophthalmol-2015-306939.
- 21. Felden J, Baumann B, Ali M, et al. Mutation spectrum and clinical investigation of achromatopsia patients with mutations in the GNAT2 gene[J]. Hum Mutat, 2019, 40(8): 1145-1155. DOI: 10.1002/humu.23768.
- 22. Wissinger B, Gamer D, Jägle H, et al. CNGA3 mutations in hereditary cone photoreceptor disorders[J]. Am J Hum Genet, 2001, 69(4): 722-737. DOI: 10.1086/323613.
- 23. Mayer AK, Van Cauwenbergh C, Rother C, et al. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients[J]. Hum Mutat, 2017, 38(11): 1579-1591. DOI: 10.1002/humu.23311.
- 24. Wang X, Wang H, Sun V, et al. Comprehensive molecular diagnosis of 179 Leber congenital amaurosis and juvenile retinitis pigmentosa patients by targeted next generation sequencing[J]. J Med Genet, 2013, 50(10): 674-688. DOI: 10.1136/jmedgenet-2013-101558.
- 25. Manes G, Guillaumie T, Vos WL, et al. High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in france and characterization of biochemical and clinical features[J]. Am J Ophthalmol, 2015, 159(2): 302-314. DOI: 10.1016/j.ajo.2014.10.033.
- 26. Peshenko IV, Olshevskaya EV, Savchenko AB, et al. Enzymatic properties and regulation of the native isozymes of retinal membrane guanylyl cyclase (RetGC) from mouse photoreceptors[J]. Biochemistry, 2011, 50(25): 5590-5600. DOI: 10.1021/bi200491b.
- 27. Liu Y, Ruoho AE, Rao VD, et al. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis[J]. Proc Natl Acad Sci USA, 1997, 94(25): 13414-13419. DOI: 10.1073/pnas.94.25.13414.
- 28. Peshenko IV, Dizhoor AM. Guanylyl cyclase-activating proteins (GCAPs) are Ca2+/Mg2+ sensors: implications for photoreceptor guanylyl cyclase (RetGC) regulation in mammalian photoreceptors[J]. J Biol Chem, 2004, 279(17): 16903-16906. DOI: 10.1074/jbc.C400065200.
- 29. Dizhoor AM, Olshevskaya EV, Peshenko IV. Retinal degeneration-3 protein promotes photoreceptor survival by suppressing activation of guanylyl cyclase rather than accelerating GMP recycling[J/OL]. J Biol Chem, 2021, 296: 100362[2021-02-02]. https://pubmed.ncbi.nlm.nih.gov/33539922/. DOI: 10.1016/j.jbc.2021.100362.
- 30. Sharon D, Wimberg H, Kinarty Y, et al. Genotype-functional-phenotype correlations in photoreceptor guanylate cyclase (GC-E) encoded by GUCY2D[J]. Prog Retin Eye Res, 2018, 63: 69-91. DOI: 10.1016/j.preteyeres.2017.10.003.
- 31. Wimberg H, Lev D, Yosovich K, et al. Photoreceptor guanylate cyclase (GUCY2D) mutations cause retinal dystrophies by severe malfunction of Ca2+-dependent cyclic GMP synthesis[J/OL]. Front Mol Neurosci, 2018, 11: 348[2018-09-25]. https://pubmed.ncbi.nlm.nih.gov/30319355/. DOI: 10.3389/fnmol.2018.00348.
- 32. Sato S, Peshenko IV, Olshevskaya EV, et al. GUCY2D cone-rod dystrophy-6 is a "phototransduction disease" triggered by abnormal calcium feedback on retinal membrane guanylyl cyclase 1[J]. J Neurosci, 2018, 38(12): 2990-3000. DOI: 10.1523/JNEUROSCI.2985-17.2018.
- 33. Olshevskaya EV, Calvert PD, Woodruff ML, et al. The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice[J]. J Neurosci, 2004, 24(27): 6078-6085. DOI: 10.1523/JNEUROSCI.0963-04.2004.
- 34. Peshenko IV, Cideciyan AV, Sumaroka A, et al. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration[J]. J Biol Chem, 2019, 294(10): 3476-3488. DOI: 10.1074/jbc.RA118.006180.
- 35. Peshenko IV, Olshevskaya EV, Dizhoor AM. Functional study and mapping sites for interaction with the target enzyme in retinal degeneration 3 (RD3) protein[J]. J Biol Chem, 2016, 291(37): 19713-19723. DOI: 10.1074/jbc.M116.742288.
- 36. Aguilà M, Bevilacqua D, Mcculley C, et al. Hsp90 inhibition protects against inherited retinal degeneration[J]. Hum Mol Genet, 2014, 23(8): 2164-2175. DOI: 10.1093/hmg/ddt613.
- 37. Gopalakrishna KN, Boyd K, Yadav RP, et al. Aryl hydrocarbon receptor-interacting protein-like 1 is an obligate chaperone of phosphodiesterase 6 and is assisted by the gamma-subunit of its client[J]. J Biol Chem, 2016, 291(31): 16282-16291. DOI: 10.1074/jbc.M116.737593.
- 38. Srivastava D, Yadav RP, Singh S, et al. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1[J]. Structure, 2023, 31(3): 309-317. DOI: 10.1016/j.str.2022.12.014.
- 39. Smith SO. Molecular mechanism of rhodopsin photoactivation[J]. Biophys J, 2009, 96(3): 87. DOI: 10.1016/j.bpj.2008.12.3587.
- 40. Farber DB, Lolley RN. Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina[J]. Science, 1974, 186(4162): 449-451. DOI: 10.1126/science.186.4162.449.
- 41. Gargini C, Terzibasi E, Mazzoni F, et al. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study[J]. J Comp Neurol, 2007, 500(2): 222-238. DOI: 10.1002/cne.21144.
- 42. Wang T, Reingruber J, Woodruff ML, et al. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx[J]. J Biol Chem, 2018, 293(40): 15332-15346. DOI: 10.1074/jbc.RA118.004459.
- 43. Sothilingam V, Garcia Garrido M, Jiao K, et al. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype[J]. Hum Mol Genet, 2015, 24(19): 5486-5499. DOI: 10.1093/hmg/ddv275.
- 44. Gal A, Orth U, Baehr W, et al. Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness[J]. Nat Genet, 1994, 7(1): 64-68. DOI: 10.1038/ng0594-64.
- 45. Tsang SH, Woodruff ML, Jun L, et al. Transgenic mice carrying the H258N mutation in the gene encoding the beta-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness[J]. Hum Mutat, 2007, 28(3): 243-254. DOI: 10.1002/humu.20425.
- 46. Thiadens AA, den Hollander AI, Roosing S, et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders[J]. Am J Hum Genet, 2009, 85(2): 240-247. DOI: 10.1016/j.ajhg.2009.06.016.
- 47. Ramamurthy V, Niemi GA, Reh TA, et al. Leber congenital amaurosis linked to AIPL1: a mouse model reveals destabilization of cGMP phosphodiesterase[J]. Proc Natl Acad Sci USA, 2004, 101(38): 13897-13902. DOI: 10.1073/pnas.0404197101.
- 48. Kohl S, Baumann B, Rosenberg T, et al. Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia[J]. Am J Hum Genet, 2002, 71(2): 422-425. DOI: 10.1086/341835.
- 49. Biel M, Michalakis S. Cyclic nucleotide-gated channels[J]. Handb Exp Pharmacol, 2009, 1(191): 111-136. DOI: 10.1007/978-3-540-68964-5_7.
- 50. Michalakis S, Becirovic E, Biel M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy[J]. Int J Mol Sci, 2018, 19(3): 749. DOI: 10.3390/ijms19030749.
- 51. Kandaswamy S, Zobel L, John B, et al. Mutations within the cGMP-binding domain of CNGA1 causing autosomal recessive retinitis pigmentosa in human and animal model[J]. Cell Death Discov, 2022, 8(1): 387. DOI: 10.1038/s41420-022-01185-0.
- 52. Radojevic B, Jones K, Klein M, et al. Variable expressivity in patients with autosomal recessive retinitis pigmentosa associated with the gene CNGB1[J]. Ophthalmic Genet, 2021, 42(1): 15-22. DOI: 10.1080/13816810.2020.1832532.
- 53. Wang T, Tsang SH, Chen J. Two pathways of rod photoreceptor cell death induced by elevated cGMP[J]. Hum Mol Genet, 2017, 26(12): 2299-2306. DOI: 10.1093/hmg/ddx121.
- 54. Xu J, Morris L, Thapa A, et al. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function[J]. J Neurosci, 2013, 33(37): 14939-14948. DOI: 10.1523/JNEUROSCI.0909-13.2013.
- 55. Paquet-Durand F, Hauck SM, Van Veen T, et al. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models[J]. J Neurochem, 2009, 108(3): 796-810. DOI: 10.1111/j.1471-4159.2008.05822.x.
- 56. Thapa A, Morris L, Xu J, et al. Endoplasmic reticulum stress-associated cone photoreceptor degeneration in cyclic nucleotide-gated channel deficiency[J]. J Biol Chem, 2012, 287(22): 18018-18029. DOI: 10.1074/jbc.M112.342220.
- 57. Ma H, Butler MR, Thapa A, et al. cGMP/protein kinase G signaling suppresses inositol 1, 4, 5-trisphosphate receptor phosphorylation and promotes endoplasmic reticulum stress in photoreceptors of cyclic nucleotide-gated channel-deficient mice[J]. J Biol Chem, 2015, 290(34): 20880-20892. DOI: 10.1074/jbc.M115.641159.
- 58. Makino CL, Wen XH, Olshevskaya EV, et al. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice[J/OL]. PLoS One, 2012, 7(10): e47637[2012-10-17]. https://pubmed.ncbi.nlm.nih.gov/23082185/. DOI: 10.1371/journal.pone.0047637.
- 59. Butler MR, Ma H, Yang F, et al. Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency[J]. J Biol Chem, 2017, 292(27): 11189-11205. DOI: 10.1074/jbc.M117.782326.
- 60. Haidara K, Marion M, Gascon-Barre M, et al. Implication of caspases and subcellular compartments in tert-butylhydroperoxide induced apoptosis[J]. Toxicol Appl Pharmacol, 2008, 229(1): 65-76. DOI: 10.1016/j.taap.2008.01.010.
- 61. Sancho-Pelluz J, Alavi MV, Sahaboglu A, et al. Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse[J/OL]. Cell Death Dis, 2010, 1(2): e24[2010-02-11]. https://pubmed.ncbi.nlm.nih.gov/21364632/. DOI: 10.1038/cddis.2010.4.
- 62. Comitato A, Di Salvo MT, Turchiano G, et al. Dominant and recessive mutations in rhodopsin activate different cell death pathways[J]. Hum Mol Genet, 2016, 25(13): 2801-2812. DOI: 10.1093/hmg/ddw137.
- 63. Vu JT, Wang E, Wu J, et al. Calpains as mechanistic drivers and therapeutic targets for ocular disease[J]. Trends Mol Med, 2022, 28(8): 644-661. DOI: 10.1016/j.molmed.2022.05.007.
- 64. Tosi J, Davis RJ, Wang NK, et al. shRNA knockdown of guanylate cyclase 2e or cyclic nucleotide gated channel alpha 1 increases photoreceptor survival in a cGMP phosphodiesterase mouse model of retinitis pigmentosa[J]. J Cell Mol Med, 2011, 15(8): 1778-1787. DOI: 10.1111/j.1582-4934.2010.01201.x.
- 65. Power MJ, Rogerson LE, Schubert T, et al. Systematic spatiotemporal mapping reveals divergent cell death pathways in three mouse models of hereditary retinal degeneration[J]. J Comp Neurol, 2020, 528(7): 1113-1139. DOI: 10.1002/cne.24807.
- 66. Garger A, Richard EA, Lisman JE. Inhibitors of guanylate cyclase inhibit phototransduction in limulus ventral photoreceptors[J]. Vis Neurosci, 2001, 18(4): 625-632. DOI: 10.1017/s0952523801184129.
- 67. Allison AC, Kowalski WJ, Muller CD, et al. Mechanisms of action of mycophenolic acid[J]. Ann N Y Acad Sci, 1993, 696: 63-87. DOI: 10.1111/j.1749-6632.1993.tb17143.x.
- 68. Yang P, Lockard R, Titus H, et al. Suppression of cGMP-dependent photoreceptor cytotoxicity with mycophenolate is neuroprotective in murine models of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2020, 61(10): 25. DOI: 10.1167/iovs.61.10.25.
- 69. Tolone A, Belhadj S, Rentsch A, et al. The cGMP pathway and inherited photoreceptor degeneration: targets, compounds, and biomarkers[J]. Genes (Basel), 2019, 10(6): 453. DOI: 10.3390/genes10060453.
- 70. Butt E, Van Bemmelen M, Fischer L, et al. Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3', 5'-monophosphorothioates[J]. FEBS Lett, 1990, 263(1): 47-50. DOI: 10.1016/0014-5793(90)80702-k.
- 71. Wei JY, Cohen ED, Genieser HG, et al. Substituted cGMP analogs can act as selective agonists of the rod photoreceptor cGMP-gated cation channel[J]. J Mol Neurosci, 1998, 10(1): 53-64. DOI: 10.1007/BF02737085.
- 72. Burkhardt M, Glazova M, Gambaryan S, et al. KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells[J]. J Biol Chem, 2000, 275(43): 33536-33541. DOI: 10.1074/jbc.M005670200.
- 73. Sung YJ, Sofoluke N, Nkamany M, et al. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain[J]. Pain, 2017, 158(5): 822-832. DOI: 10.1097/j.pain.0000000000000832.