- 1. Department of Ophthalmology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing 101199, China;
- 2. Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China;
The treatment of hereditary retinopathy depends on gene replacement or editing therapy, and adeno-associated virus (AAV) vector is one of the most widely used gene transfer vectors. The delivery methods of AAV vector-mediated target genes to the retina inlucde intravitreal injection, subretinal injection, and suprachorioidal injection. Intravitreal injection of AAV vector is currently the most commonly used delivery route, which can effectively improve the functions of retina disorders such as blinding retinal dystrophy in mice. Subretinal injection of AAV vector can deliver the target gene to the local retina, resulting in stronger efficiency of transfection and gene expressio, however, the high technical operations are required. In recent years, as a new high-profile delivery route suprachorioidal injection of AAV vector can achieve more extensive transfection of target genes in the retina of rabbits and rats. At present, the efficiency of AAV vector transduction in the retina is affected by the delivery mode. In the future, it is necessary to further explore the effect of AAV vector delivery mode on the transduction efficiency in order to find an important delivery route for mediating gene therapy for retinal diseases.
Citation: Wan Bo, Jin Zibing. Research progress of effect of different delivery routes of adeno-associated virus on retinal gene therapy. Chinese Journal of Ocular Fundus Diseases, 2024, 40(5): 409-414. doi: 10.3760/cma.j.cn511434-20230918-00391 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Rodrigues GA, Shalaev E, Karami TK, et al. Pharmaceutical development of AAV-based gene therapy products for the eye[J]. Pharm Res, 2018, 36(2): 29. DOI: 10.1007/s11095-018-2554-7. |
2. | Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss[J]. Vision Res, 2015, 111(Pt B): 124-133. DOI: 10.1016/j.visres.2014.07.013. |
3. | Rakoczy EP, Magno AL, Lai CM, et al. Three-year follow-up of phase 1 and 2a rAAV. sFLT-1 subretinal gene therapy trials for exudative age related macular degeneration[J]. Am J Ophthalmol, 2019, 204: 113-123. DOI: 10.1016/j.ajo.2019.03.006. |
4. | Khabou H, Desrosiers M, Winckler C, et al. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant7m8[J]. Biotechnol Bioeng, 2016, 113(12): 2712-2724. DOI: 10.1002/bit.26031. |
5. | Bennett J, Wilson J, Sun D, et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina[J]. Invest Ophthalmol Vis Sci, 1994, 35(5): 2535-2542. |
6. | Wilmott P, Lisowski L, Alexander IE, et al. A user's guide to the inverted terminal repeats of adeno-associated virus[J]. Hum Gene Ther Methods, 2019, 30(6): 206-213. DOI: 10.1089/hgtb.2019.276. |
7. | Grosse S, Penaud-Budloo M, Herrmann AK, et al. Relevance of assembly-activating protein for adeno-associated virus vector production and capsid protein stability in mammalian and insect cells[J/OL]. J Virol, 2017, 91(20): e01198-e01117[2017-09-27]. https://pubmed.ncbi.nlm.nih.gov/28768875/. DOI: 10.1128/JVI.01198-17. |
8. | Duong TT, Lim J, Vasireddy V, et al. Comparative AAV-eGFP transgene expression using vector serotypes 1-9, 7m8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons[J/OL]. Stem Cells Int, 2019, 2019: 7281912[2019-01-17]. https://pubmed.ncbi.nlm.nih.gov/30800164/. DOI: 10.1155/2019/7281912. |
9. | Hughes CP, O' Flynn NMJ, Gatherer M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98. DOI: 10.1016/j.omtm.2018.11.005. |
10. | Duong TT, Vasireddy V, Ramachandran P, et al. Use of induced pluripotent stem cell models to probe the pathogenesis of choroideremia and to develop a potential treatment[J]. Stem Cell Res, 2018, 27: 140-150. DOI: 10.1016/j.scr.2018.01.009. |
11. | Hickey DG, Edwards TL, Barnard AR, et al. Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina[J]. Gene Ther, 2017, 24(12): 787-800. DOI: 10.1038/gt.2017.85. |
12. | Guziewicz KE, Zangerl B, Komaromy AM, et al. Recombinant AAV-mediated BEST1 transfer to the retinal pigment epithelium: analysis of serotype-dependent retinal effects[J/OL]. PLoS One, 2013, 8(10): 75666[2013-10-15]. https://pubmed.ncbi.nlm.nih.gov/24143172/. DOI: 10.1371/journal.pone.0075666. |
13. | De Silva SR, Charbel Issa P, Singh MS, et al. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(-/-) mouse and bipolar cells in the rd1 mouse and human retina ex vivo[J]. Gene Ther, 2016, 23(11): 767-774. DOI: 10.1038/gt.2016.54. |
14. | Katada Y, Kobayashi K, Tsubota K, et al. Evaluation of AAV-DJ vector for retinal gene therapy[J/OL]. Peer J, 2019, 7: 6317[2019-01-17]. https://pubmed.ncbi.nlm.nih.gov/30671314/. DOI: 10.7717/peerj.6317. |
15. | Mietzsch M, Jose A, Chipman P, et al. Completion of the AAV structural atlas: serotype capsid structures reveals clade-specific features[J]. Viruses, 2021, 13(1): 101. DOI: 10.3390/v13010101. |
16. | Puppo A, Cesi G, Marrocco E, et al. Retinal transduction profiles by high-capacity viral vectors[J]. Gene Ther, 2014, 21(10): 855-865. DOI: 10.1038/gt.2014.57. |
17. | Todorich B, Yiu G, Hahn P. Current and investigational pharmaco-therapeutic approaches for modulating retinal angiogenesis[J]. Expert Rev Clin Pharmacol, 2014, 7(3): 375-391. DOI: 10.1586/17512433.2014.890047. |
18. | Pavlou M, Schön C, Occelli LM, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders[J/OL]. EMBO Mol Med, 2021, 13(4): e13392[2021-04-09]. https://pubmed.ncbi.nlm.nih.gov/33616280/. DOI: 10.15252/emmm.202013392. |
19. | Chiha W, Bartlett CA, Petratos S, et al. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury[J/OL]. Exp Neurol, 2020, 326: 113167[2020-01-02]. https://pubmed.ncbi.nlm.nih.gov/31904385/. DOI: 10.1016/j.expneurol.2019.113167. |
20. | Lee SHS, Kim HJ, Shin OK, et al. Intravitreal injection of AAV expressing soluble VEGF receptor-1 variant induces anti-VEGF activity and suppresses choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5398-5407. DOI: 10.1167/iovs.18-24926. |
21. | Crabtree E, Uribe K, Smith SM, et al. Inhibition of experimental autoimmune uveitis by intravitreal AAV-Equine-IL10 gene therapy[J/OL]. PLoS One, 2022, 17(8): e0270972[2022-08-18]. https://pubmed.ncbi.nlm.nih.gov/35980983/. DOI: 10.1371/journal.pone.0270972. |
22. | 李宗媛, 杨宁, 罗晋媛, 等. Krüppel样因子7对视网膜缺血再灌注损伤小鼠视网膜神经节细胞存活及视网膜电图的影响[J]. 中华眼底病杂志, 2020, 36(11): 846-852. DOI: 10.3760/cma.j.cn511434-20200602-00256.Li ZY, Yang N, Luo JY, et al. Effects of Krüppel-like factor 7 on the survival of retinal ganglion cells and electroretinogram after retinal ischemia-reperfusion injury[J]. Chin J Ocul Fundus Dis, 2020, 36(11): 846-852. DOI: 10.3760/cma.j.cn511434-20200602-00256. |
23. | Kotterman MA, Yin L, Strazzeri JM, et al. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates[J]. Gene Ther, 2015, 22(2): 116-126. DOI: 10.1038/gt.2014.115. |
24. | 张阳阳, 戴旭锋, 张华, 等. X连锁视网膜劈裂症分子遗传学研究与基因治疗的现状及进展[J]. 中华眼底病杂志, 2016, 32(6): 657-660. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.027.Zhang YY, Dai XF, Zhang H, et al. Molecular genetics and gene therapy of X-linked congenital retinoschisis[J]. Chin J Ocul Fundus Dis, 2016, 32(6): 657-660. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.027. |
25. | Catherine Cukras C, Wiley HE, Jeffrey BG, et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase Ⅰ/Ⅱa trial by intravitreal delivery[J]. Mol Ther, 2018, 26(9): 2282-2294. DOI: 10.1016/j.ymthe.2018.05.025. |
26. | Heier JS, Kherani S, Desai S, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet, 2017, 390(10089): 50-61. DOI: 10.1016/S0140-6736(17)30979-0. |
27. | Song H, Bush RA, Zeng Y, et al. Trans-ocular electric current in vivo enhances AAV-mediated retinal gene transduction after intravitreal vector administration[J]. Mol Ther Methods Clin Dev, 2018, 13: 77-85. DOI: 10.1016/j.omtm.2018.12.006. |
28. | Han IC, Cheng JL, Burnight ER, et al. Retinal tropism and transduction of adeno-associated virus varies by serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats[J]. Hum Gene Ther, 2020, 31(23-24): 1288-1299. DOI: 10.1089/hum.2020.043. |
29. | Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous[J]. Mol Ther, 2009, 17(12): 2096-2102. DOI: 10.1038/mt.2009.181. |
30. | Gamlin PD, Alexander JJ, Boye SL, et al. SubILM injection of AAV for gene delivery to the retina[J]. Methods Mol Biol, 2019, 1950: 249-262. DOI: 10.1007/978-1-4939-9139-6_14. |
31. | Teo KYC, Lee SY, Barathi AV, et al. Surgical removal of internal limiting membrane and layering of AAV vector on the retina under air enhances gene transfection in a nonhuman primate[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3574-3583. DOI: 10.1167/iovs.18-24333. |
32. | Tummala G, Crain A, Rowlan J, et al. Characterization of gene therapy associated uveitis following intravitreal adeno-associated virus injection in mice[J]. Invest Ophthalmol Vis Sci, 2021, 62(2): 41. DOI: 10.1167/iovs.62.2.41. |
33. | Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature[J]. Nat Rev Immunol, 2003, 3(11): 879-889. DOI: 10.1038/nri1224. |
34. | 梁郁萍, 陈蔚琪, 洪玉, 等. AAV介导HO-1基因转染对视网膜色素变性大鼠视网膜的保护作用[J]. 中华实验眼科杂志, 2021, 39(8): 693-699. DOI: 10.3760/cma.j.cn115989-20201108-00754.Liang YP, Chen WQ, Hong Y, e al. Protective effect of adeno-associated virus vector mediated heme oxygenase-1 overexpression on retinitis pigmentosa in rats[J]. Chin J Exp Ophthalmol, 2021, 39(8): 693-699. DOI: 10.3760/cma.j.cn115989-20201108-00754. |
35. | Wiley LA, Boyce TM, Meyering EE, et al. The Degree of adeno-associated virus-induced retinal inflammation varies based on serotype and route of delivery: intravitreal, subretinal, or suprachoroidal[J]. Hum Gene Ther, 2023, 34(11): 530-539. DOI: 10.1089/hum.2022.222. |
36. | Ahmed CM, Massengill MT, Ildefonso CJ, et al. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP)[J/OL]. Vision Res, 2023, 206: 108189[2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36773475/. DOI: 10.1016/j.visres.2023.108189. |
37. | Ferla R, Dell'Aquila F, Doria M, et al. Efficacy, pharmacokinetics, and safety in the mouse and primate retina of dual AAV vectors for Usher syndrome type 1B[J]. Mol Ther Methods Clin Dev, 2023, 28: 396-411. DOI: 10.1016/j.omtm.2023.02.002. |
38. | Mowat FM, Gornik KR, Dinculescu A, et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach[J]. Gene Ther, 2014, 21(1): 96-105. DOI: 10.1038/gt.2013.64. |
39. | Gootwine E, Ofri R, Banin E, et al. Safety and efficacy evaluation of rAAV2tYF-PR1.7-hCNGA3 vector delivered by subretinal injection in CNGA3 mutant achromatopsia sheep[J]. Hum Gene Ther Clin Dev, 2017, 28(2): 96-107. DOI: 10.1089/humc.2017.028. |
40. | Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2231-2239. DOI: 10.1056/NEJMoa0802268. |
41. | Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by muta- tions in RPGR[J]. Nat Med, 2020, 26(3): 354-359. DOI: 10.1038/s41591-020-0763-1. |
42. | Scruggs BA, Bhattarai S, Helms M, et al. AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis[J/OL]. PLoS One, 2022, 17(12): e0276298[2022-12-07]. https://pubmed.ncbi.nlm.nih.gov/36477475/. DOI: 10.1371/journal.pone.0276298. |
43. | Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial[J]. Lancet, 2016, 388(10045): 661-672. DOI: 10.1016/S0140-6736(16)30371-3. |
44. | Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8. |
45. | Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[J]. N Engl J Med, 2015, 372(20): 1920-1926. DOI: 10.1056/NEJMoa1412965. |
46. | Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential[J]. Clin Ophthalmol, 2016, 10: 173-178. DOI: 10.2147/OPTH.S89784. |
47. | Yiu G, Pecen P, Sarin N, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography[J]. JAMA Ophthalmol, 2014, 132(2): 174-181. DOI: 10.1001/jamaophthalmol.2013.7288. |
48. | Willoughby AS, Vuong VS, Cunefare D, et al. Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion[J]. Am J Ophthalmol, 2018, 186: 144-151. DOI: 10.1016/j.ajo.2017.11.020. |
49. | Emami-Naeini P, Yiu G. Medical and surgical applications for the suprachoroidal space[J]. Int Ophthalmol Clin, 2019, 59(1): 195-207. DOI: 10.1097/IIO.0000000000000251. |
50. | Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment[J]. Am J Ophthalmol, 2006, 142(5): 777-787. DOI: 10.1016/j.ajo.2006.05.045. |
51. | Kim YC, Edelhauser HF, Prausnitz MR. Targeted delivery of anti-glaucoma drugs to the supraciliary space using microneedles[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7387-7397. DOI: 10.1167/iovs.14-14651. |
52. | Wang M, Liu W, Lu Q, et al. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits[J]. Retina, 2012, 32(10): 2158-2164. DOI: 10.1097/IAE.0b013e3182576d1d. |
53. | Liu S, Liu W, Ma Y, et al. Suprachoroidal injection of ketorolac tromethamine does not cause retinal damage[J]. Neural Regen Res, 2012, 7(35): 2770-2777. DOI: 10.3969/j.issn.1673-5374.2012.35.004. |
54. | Gu B, Liu J, Li X, et al. Real-time monitoring of suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in guinea pig eyes[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3623-3634. DOI: 10.1167/iovs.15-16597. |
55. | 陈梅, 程凌云. 脉络膜上腔给药研究现状与进展[J]. 中华眼底病杂志, 2017, 33(2): 209-213. DOI: 10.3760/cma.j.issn.1005-1015.2017.02.027.Chen M, Cheng LY. Research status and progress of suprachorioidal cavity drug delivery[J]. Chin J Ocul Fundus Dis, 2017, 33(2): 209-213. DOI: 10.3760/cma.j.issn.1005-1015.2017.02.027. |
56. | Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway[J]. Cell Host Microbe, 2011, 10: 563-576. DOI: 10.1016/j.chom.2011.10.014. |
57. | Peden MC, Min J, Meyers C, et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter[J/OL]. PLoS One, 6(2): e17140[2011-02-11]. https://pubmed.ncbi.nlm.nih.gov/21347253/. DOI: 10.1371/journal.pone.0017140. |
58. | Ding K, Shen J, Hafiz Z, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression[J]. J Clin Invest, 2019, 129(11): 4901-4911. DOI: 10.1172/JCI129085. |
59. | Ding K, Shen J, Hackett S, et al. Proteosomal degradation impairs transcytosis of AAV vectors from suprachoroidal space to retina[J]. Gene Ther, 2021, 28(12): 740-747. DOI: 10.1038/s41434-021-00233-1. |
60. | Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates[J]. Mol Ther Methods Clin Dev, 2020, 16: 179-191. DOI: 10.1016/j.omtm.2020.01.002. |
- 1. Rodrigues GA, Shalaev E, Karami TK, et al. Pharmaceutical development of AAV-based gene therapy products for the eye[J]. Pharm Res, 2018, 36(2): 29. DOI: 10.1007/s11095-018-2554-7.
- 2. Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss[J]. Vision Res, 2015, 111(Pt B): 124-133. DOI: 10.1016/j.visres.2014.07.013.
- 3. Rakoczy EP, Magno AL, Lai CM, et al. Three-year follow-up of phase 1 and 2a rAAV. sFLT-1 subretinal gene therapy trials for exudative age related macular degeneration[J]. Am J Ophthalmol, 2019, 204: 113-123. DOI: 10.1016/j.ajo.2019.03.006.
- 4. Khabou H, Desrosiers M, Winckler C, et al. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant7m8[J]. Biotechnol Bioeng, 2016, 113(12): 2712-2724. DOI: 10.1002/bit.26031.
- 5. Bennett J, Wilson J, Sun D, et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina[J]. Invest Ophthalmol Vis Sci, 1994, 35(5): 2535-2542.
- 6. Wilmott P, Lisowski L, Alexander IE, et al. A user's guide to the inverted terminal repeats of adeno-associated virus[J]. Hum Gene Ther Methods, 2019, 30(6): 206-213. DOI: 10.1089/hgtb.2019.276.
- 7. Grosse S, Penaud-Budloo M, Herrmann AK, et al. Relevance of assembly-activating protein for adeno-associated virus vector production and capsid protein stability in mammalian and insect cells[J/OL]. J Virol, 2017, 91(20): e01198-e01117[2017-09-27]. https://pubmed.ncbi.nlm.nih.gov/28768875/. DOI: 10.1128/JVI.01198-17.
- 8. Duong TT, Lim J, Vasireddy V, et al. Comparative AAV-eGFP transgene expression using vector serotypes 1-9, 7m8, and 8b in human pluripotent stem cells, RPEs, and human and rat cortical neurons[J/OL]. Stem Cells Int, 2019, 2019: 7281912[2019-01-17]. https://pubmed.ncbi.nlm.nih.gov/30800164/. DOI: 10.1155/2019/7281912.
- 9. Hughes CP, O' Flynn NMJ, Gatherer M, et al. AAV2/8 anti-angiogenic gene therapy using single-chain antibodies inhibits murine choroidal neovascularization[J]. Mol Ther Methods Clin Dev, 2018, 13: 86-98. DOI: 10.1016/j.omtm.2018.11.005.
- 10. Duong TT, Vasireddy V, Ramachandran P, et al. Use of induced pluripotent stem cell models to probe the pathogenesis of choroideremia and to develop a potential treatment[J]. Stem Cell Res, 2018, 27: 140-150. DOI: 10.1016/j.scr.2018.01.009.
- 11. Hickey DG, Edwards TL, Barnard AR, et al. Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina[J]. Gene Ther, 2017, 24(12): 787-800. DOI: 10.1038/gt.2017.85.
- 12. Guziewicz KE, Zangerl B, Komaromy AM, et al. Recombinant AAV-mediated BEST1 transfer to the retinal pigment epithelium: analysis of serotype-dependent retinal effects[J/OL]. PLoS One, 2013, 8(10): 75666[2013-10-15]. https://pubmed.ncbi.nlm.nih.gov/24143172/. DOI: 10.1371/journal.pone.0075666.
- 13. De Silva SR, Charbel Issa P, Singh MS, et al. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(-/-) mouse and bipolar cells in the rd1 mouse and human retina ex vivo[J]. Gene Ther, 2016, 23(11): 767-774. DOI: 10.1038/gt.2016.54.
- 14. Katada Y, Kobayashi K, Tsubota K, et al. Evaluation of AAV-DJ vector for retinal gene therapy[J/OL]. Peer J, 2019, 7: 6317[2019-01-17]. https://pubmed.ncbi.nlm.nih.gov/30671314/. DOI: 10.7717/peerj.6317.
- 15. Mietzsch M, Jose A, Chipman P, et al. Completion of the AAV structural atlas: serotype capsid structures reveals clade-specific features[J]. Viruses, 2021, 13(1): 101. DOI: 10.3390/v13010101.
- 16. Puppo A, Cesi G, Marrocco E, et al. Retinal transduction profiles by high-capacity viral vectors[J]. Gene Ther, 2014, 21(10): 855-865. DOI: 10.1038/gt.2014.57.
- 17. Todorich B, Yiu G, Hahn P. Current and investigational pharmaco-therapeutic approaches for modulating retinal angiogenesis[J]. Expert Rev Clin Pharmacol, 2014, 7(3): 375-391. DOI: 10.1586/17512433.2014.890047.
- 18. Pavlou M, Schön C, Occelli LM, et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders[J/OL]. EMBO Mol Med, 2021, 13(4): e13392[2021-04-09]. https://pubmed.ncbi.nlm.nih.gov/33616280/. DOI: 10.15252/emmm.202013392.
- 19. Chiha W, Bartlett CA, Petratos S, et al. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury[J/OL]. Exp Neurol, 2020, 326: 113167[2020-01-02]. https://pubmed.ncbi.nlm.nih.gov/31904385/. DOI: 10.1016/j.expneurol.2019.113167.
- 20. Lee SHS, Kim HJ, Shin OK, et al. Intravitreal injection of AAV expressing soluble VEGF receptor-1 variant induces anti-VEGF activity and suppresses choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5398-5407. DOI: 10.1167/iovs.18-24926.
- 21. Crabtree E, Uribe K, Smith SM, et al. Inhibition of experimental autoimmune uveitis by intravitreal AAV-Equine-IL10 gene therapy[J/OL]. PLoS One, 2022, 17(8): e0270972[2022-08-18]. https://pubmed.ncbi.nlm.nih.gov/35980983/. DOI: 10.1371/journal.pone.0270972.
- 22. 李宗媛, 杨宁, 罗晋媛, 等. Krüppel样因子7对视网膜缺血再灌注损伤小鼠视网膜神经节细胞存活及视网膜电图的影响[J]. 中华眼底病杂志, 2020, 36(11): 846-852. DOI: 10.3760/cma.j.cn511434-20200602-00256.Li ZY, Yang N, Luo JY, et al. Effects of Krüppel-like factor 7 on the survival of retinal ganglion cells and electroretinogram after retinal ischemia-reperfusion injury[J]. Chin J Ocul Fundus Dis, 2020, 36(11): 846-852. DOI: 10.3760/cma.j.cn511434-20200602-00256.
- 23. Kotterman MA, Yin L, Strazzeri JM, et al. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates[J]. Gene Ther, 2015, 22(2): 116-126. DOI: 10.1038/gt.2014.115.
- 24. 张阳阳, 戴旭锋, 张华, 等. X连锁视网膜劈裂症分子遗传学研究与基因治疗的现状及进展[J]. 中华眼底病杂志, 2016, 32(6): 657-660. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.027.Zhang YY, Dai XF, Zhang H, et al. Molecular genetics and gene therapy of X-linked congenital retinoschisis[J]. Chin J Ocul Fundus Dis, 2016, 32(6): 657-660. DOI: 10.3760/cma.j.issn.1005-1015.2016.06.027.
- 25. Catherine Cukras C, Wiley HE, Jeffrey BG, et al. Retinal AAV8-RS1 gene therapy for X-linked retinoschisis: initial findings from a phase Ⅰ/Ⅱa trial by intravitreal delivery[J]. Mol Ther, 2018, 26(9): 2282-2294. DOI: 10.1016/j.ymthe.2018.05.025.
- 26. Heier JS, Kherani S, Desai S, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial[J]. Lancet, 2017, 390(10089): 50-61. DOI: 10.1016/S0140-6736(17)30979-0.
- 27. Song H, Bush RA, Zeng Y, et al. Trans-ocular electric current in vivo enhances AAV-mediated retinal gene transduction after intravitreal vector administration[J]. Mol Ther Methods Clin Dev, 2018, 13: 77-85. DOI: 10.1016/j.omtm.2018.12.006.
- 28. Han IC, Cheng JL, Burnight ER, et al. Retinal tropism and transduction of adeno-associated virus varies by serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats[J]. Hum Gene Ther, 2020, 31(23-24): 1288-1299. DOI: 10.1089/hum.2020.043.
- 29. Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous[J]. Mol Ther, 2009, 17(12): 2096-2102. DOI: 10.1038/mt.2009.181.
- 30. Gamlin PD, Alexander JJ, Boye SL, et al. SubILM injection of AAV for gene delivery to the retina[J]. Methods Mol Biol, 2019, 1950: 249-262. DOI: 10.1007/978-1-4939-9139-6_14.
- 31. Teo KYC, Lee SY, Barathi AV, et al. Surgical removal of internal limiting membrane and layering of AAV vector on the retina under air enhances gene transfection in a nonhuman primate[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3574-3583. DOI: 10.1167/iovs.18-24333.
- 32. Tummala G, Crain A, Rowlan J, et al. Characterization of gene therapy associated uveitis following intravitreal adeno-associated virus injection in mice[J]. Invest Ophthalmol Vis Sci, 2021, 62(2): 41. DOI: 10.1167/iovs.62.2.41.
- 33. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature[J]. Nat Rev Immunol, 2003, 3(11): 879-889. DOI: 10.1038/nri1224.
- 34. 梁郁萍, 陈蔚琪, 洪玉, 等. AAV介导HO-1基因转染对视网膜色素变性大鼠视网膜的保护作用[J]. 中华实验眼科杂志, 2021, 39(8): 693-699. DOI: 10.3760/cma.j.cn115989-20201108-00754.Liang YP, Chen WQ, Hong Y, e al. Protective effect of adeno-associated virus vector mediated heme oxygenase-1 overexpression on retinitis pigmentosa in rats[J]. Chin J Exp Ophthalmol, 2021, 39(8): 693-699. DOI: 10.3760/cma.j.cn115989-20201108-00754.
- 35. Wiley LA, Boyce TM, Meyering EE, et al. The Degree of adeno-associated virus-induced retinal inflammation varies based on serotype and route of delivery: intravitreal, subretinal, or suprachoroidal[J]. Hum Gene Ther, 2023, 34(11): 530-539. DOI: 10.1089/hum.2022.222.
- 36. Ahmed CM, Massengill MT, Ildefonso CJ, et al. Binocular benefit following monocular subretinal AAV injection in a mouse model of autosomal dominant retinitis pigmentosa (adRP)[J/OL]. Vision Res, 2023, 206: 108189[2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36773475/. DOI: 10.1016/j.visres.2023.108189.
- 37. Ferla R, Dell'Aquila F, Doria M, et al. Efficacy, pharmacokinetics, and safety in the mouse and primate retina of dual AAV vectors for Usher syndrome type 1B[J]. Mol Ther Methods Clin Dev, 2023, 28: 396-411. DOI: 10.1016/j.omtm.2023.02.002.
- 38. Mowat FM, Gornik KR, Dinculescu A, et al. Tyrosine capsid-mutant AAV vectors for gene delivery to the canine retina from a subretinal or intravitreal approach[J]. Gene Ther, 2014, 21(1): 96-105. DOI: 10.1038/gt.2013.64.
- 39. Gootwine E, Ofri R, Banin E, et al. Safety and efficacy evaluation of rAAV2tYF-PR1.7-hCNGA3 vector delivered by subretinal injection in CNGA3 mutant achromatopsia sheep[J]. Hum Gene Ther Clin Dev, 2017, 28(2): 96-107. DOI: 10.1089/humc.2017.028.
- 40. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis[J]. N Engl J Med, 2008, 358(21): 2231-2239. DOI: 10.1056/NEJMoa0802268.
- 41. Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by muta- tions in RPGR[J]. Nat Med, 2020, 26(3): 354-359. DOI: 10.1038/s41591-020-0763-1.
- 42. Scruggs BA, Bhattarai S, Helms M, et al. AAV2/4-RS1 gene therapy in the retinoschisin knockout mouse model of X-linked retinoschisis[J/OL]. PLoS One, 2022, 17(12): e0276298[2022-12-07]. https://pubmed.ncbi.nlm.nih.gov/36477475/. DOI: 10.1371/journal.pone.0276298.
- 43. Bennett J, Wellman J, Marshall KA, et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial[J]. Lancet, 2016, 388(10045): 661-672. DOI: 10.1016/S0140-6736(16)30371-3.
- 44. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017, 390(10097): 849-860. DOI: 10.1016/S0140-6736(17)31868-8.
- 45. Jacobson SG, Cideciyan AV, Roman AJ, et al. Improvement and decline in vision with gene therapy in childhood blindness[J]. N Engl J Med, 2015, 372(20): 1920-1926. DOI: 10.1056/NEJMoa1412965.
- 46. Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential[J]. Clin Ophthalmol, 2016, 10: 173-178. DOI: 10.2147/OPTH.S89784.
- 47. Yiu G, Pecen P, Sarin N, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography[J]. JAMA Ophthalmol, 2014, 132(2): 174-181. DOI: 10.1001/jamaophthalmol.2013.7288.
- 48. Willoughby AS, Vuong VS, Cunefare D, et al. Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion[J]. Am J Ophthalmol, 2018, 186: 144-151. DOI: 10.1016/j.ajo.2017.11.020.
- 49. Emami-Naeini P, Yiu G. Medical and surgical applications for the suprachoroidal space[J]. Int Ophthalmol Clin, 2019, 59(1): 195-207. DOI: 10.1097/IIO.0000000000000251.
- 50. Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment[J]. Am J Ophthalmol, 2006, 142(5): 777-787. DOI: 10.1016/j.ajo.2006.05.045.
- 51. Kim YC, Edelhauser HF, Prausnitz MR. Targeted delivery of anti-glaucoma drugs to the supraciliary space using microneedles[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7387-7397. DOI: 10.1167/iovs.14-14651.
- 52. Wang M, Liu W, Lu Q, et al. Pharmacokinetic comparison of ketorolac after intracameral, intravitreal, and suprachoroidal administration in rabbits[J]. Retina, 2012, 32(10): 2158-2164. DOI: 10.1097/IAE.0b013e3182576d1d.
- 53. Liu S, Liu W, Ma Y, et al. Suprachoroidal injection of ketorolac tromethamine does not cause retinal damage[J]. Neural Regen Res, 2012, 7(35): 2770-2777. DOI: 10.3969/j.issn.1673-5374.2012.35.004.
- 54. Gu B, Liu J, Li X, et al. Real-time monitoring of suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in guinea pig eyes[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3623-3634. DOI: 10.1167/iovs.15-16597.
- 55. 陈梅, 程凌云. 脉络膜上腔给药研究现状与进展[J]. 中华眼底病杂志, 2017, 33(2): 209-213. DOI: 10.3760/cma.j.issn.1005-1015.2017.02.027.Chen M, Cheng LY. Research status and progress of suprachorioidal cavity drug delivery[J]. Chin J Ocul Fundus Dis, 2017, 33(2): 209-213. DOI: 10.3760/cma.j.issn.1005-1015.2017.02.027.
- 56. Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway[J]. Cell Host Microbe, 2011, 10: 563-576. DOI: 10.1016/j.chom.2011.10.014.
- 57. Peden MC, Min J, Meyers C, et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter[J/OL]. PLoS One, 6(2): e17140[2011-02-11]. https://pubmed.ncbi.nlm.nih.gov/21347253/. DOI: 10.1371/journal.pone.0017140.
- 58. Ding K, Shen J, Hafiz Z, et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression[J]. J Clin Invest, 2019, 129(11): 4901-4911. DOI: 10.1172/JCI129085.
- 59. Ding K, Shen J, Hackett S, et al. Proteosomal degradation impairs transcytosis of AAV vectors from suprachoroidal space to retina[J]. Gene Ther, 2021, 28(12): 740-747. DOI: 10.1038/s41434-021-00233-1.
- 60. Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates[J]. Mol Ther Methods Clin Dev, 2020, 16: 179-191. DOI: 10.1016/j.omtm.2020.01.002.