1. |
Sivaprasad S, Sen S, Cunha-Vaz J. Perspectives of diabetic retinopathy-challenges and opportunities[J]. Eye (Lond), 2023, 37(11): 2183-2191. DOI: 10.1038/s41433-022-02335-5.
|
2. |
中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)-基于循证医学修订[J]. 中华眼底病杂志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Fundus Pathology Group of Ophthalmology Branch of Chinese Medical Association, Fundus Pathology Group of Ophthalmology Branch of Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)[J]. Chin J Ophthalmol, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
|
3. |
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res Clin Pract, 2022, 183: 109119[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/34879977/. DOI: 10.1016/j.diabres.2021.109119.
|
4. |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. DOI: 10.1016/j.ophtha.2021.04.027.
|
5. |
Fletcher EL, Dixon MA, Mills SA, et al. Anomalies in neurovascular coupling during early diabetes: a review[J]. Clin Exp Ophthalmol, 2023, 51(1): 81-91. DOI: 10.1111/ceo.14190.
|
6. |
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies[J]. J Neuroinflammation, 2023, 20(1): 57. DOI: 10.1186/s12974-023-02740-x.
|
7. |
Yi W, Lu Y, Zhong S, et al. A single-cell transcriptome atlas of the aging human and macaque retina[J]. Nati Sci Rev, 2020, 8(4): 179. DOI: 10.1093/nsr/nwaa179.
|
8. |
Yip SH, Sham PC, Wang J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data[J]. Brief Bioinform, 2019, 20(4): 1583-1589. DOI: 10.1093/bib/bby011.
|
9. |
Jovic D, Liang X, Zeng H, et al. Single-cell RNA sequencing technologies and applications: a brief overview[J/OL]. Clin Transl Med, 2022, 12(3): e694[2022-03-01]. https://pubmed.ncbi.nlm.nih.gov/35352511/. DOI: 10.1002/ctm2.694.
|
10. |
Mao P, Shen Y, Mao X, et al. The single-cell landscape of alternative transcription start sites of diabetic retina[J/OL]. Exp Eye Res, 2023, 233: 109520[2023-05-24]. https://pubmed.ncbi.nlm.nih.gov/37236522/. DOI: 10.1016/j.exer.2023.109520.
|
11. |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214. DOI: 10.1016/j.cell.2015.05.002.
|
12. |
Lukowski SW, Lo CY, Sharov AA, et al. A single-cell transcriptome atlas of the adult human retina[J/OL]. EMBO J, 2019, 38(18): e100811[2019-09-16]. https://pubmed.ncbi.nlm.nih.gov/31436334/. DOI: 10.15252/embj.2018100811.
|
13. |
Voigt AP, Whitmore SS, Flamme-Wiese MJ, et al. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing[J]. Exp Eye Res, 2019, 184: 234-242. DOI: 10.1016/j.exer.2019.05.001.
|
14. |
Zhang R, Huang C, Chen Y, et al. Single-cell transcriptomic analysis revealing changes in retinal cell subpopulation levels and the pathways involved in diabetic retinopathy[J]. Ann Transl Med, 2022, 10(10): 562. DOI: 10.21037/atm-22-1546.
|
15. |
Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter?[J]. Diabetologia, 2018, 61(9): 1902-1912. DOI: 10.1007/s00125-018-4692-1.
|
16. |
易秋雪, 张敬法, 柳林. 小胶质细胞在糖尿病视网膜病变中的作用[J]. 国际眼科杂志, 2019, 19(12): 2048-2052. DOI: 10.3980/j.issn.1672-5123.2019.12.11.Yi QX, Zhang JF, Liu L. Function of microglia in diabetic retinopathy[J]. Int Eye Sci, 2019, 19(12): 2048-2052. DOI: 10.3980/j.issn.1672-5123.2019.12.11.
|
17. |
Anderson SR, Roberts JM, Ghena N, et al. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence[J/OL]. eLife, 2022, 11: e76564[2022-04-28]. https://pubmed.ncbi.nlm.nih.gov/35481836/. DOI: 10.7554/eLife.76564.
|
18. |
Lv K, Ying H, Hu G, et al. Integrated multi-omics reveals the activated retinal microglia with intracellular metabolic reprogramming contributes to inflammation in STZ-induced early diabetic retinopathy[J/OL]. Front Immunol, 2022, 13: 942768[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36119084/. DOI: 10.3389/fimmu.2022.942768.
|
19. |
Hu Z, Mao X, Chen M, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy[J]. Diabetes, 2022, 71(4): 762-773. DOI: 10.2337/db21-0551.
|
20. |
Binet F, Cagnone G, Crespo-Garcia S, et al. Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy[J/OL]. Science, 2020, 369(6506): e5356[2020-08-21]. https://pubmed.ncbi.nlm.nih.gov/32820093/. DOI: 10.1126/science.aay5356.
|
21. |
Liu Z, Shi H, Xu J, et al. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy[J/OL]. JCI Insight, 2022, 7(23): e160940[2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/36264636/. DOI: 10.1172/jci.insight.160940.
|
22. |
Van Hove I, De Groef L, Boeckx B, et al. Single-cell transcriptome analysis of the Akimba mouse retina reveals cell-type-specific insights into the pathobiology of diabetic retinopathy[J]. Diabetologia, 2020, 63(10): 2235-2248. DOI: 10.1007/s00125-020-05218-0.
|
23. |
Paolicelli RC, Sierra A, Stevens B, et al. Microglia states and nomenclature: a field at its crossroads[J]. Neuron, 2022, 110(21): 3458-3483. DOI: 10.1016/j.neuron.2022.10.020.
|
24. |
Fu X, Feng S, Qin H, et al. Microglia: the breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy[J/OL]. Front Mol Neurosci, 2023, 16: 1100254[2023-01-23]. https://pubmed.ncbi.nlm.nih.gov/36756614/. DOI: 10.3389/fnmol.2023.1100254.
|
25. |
Yamaguchi M, Nakao S, Wada I, et al. Identifying hyperreflective foci in diabetic retinopathy via VEGF-induced local self-renewal of CX3CR1+ vitreous resident macrophages[J]. Diabetes, 2022, 71(12): 2685-2701. DOI: 10.2337/db21-0247.
|
26. |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J/OL]. Front Immunol, 2020, 11: 564077[2020-11-06]. https://pubmed.ncbi.nlm.nih.gov/33240260/. DOI: 10.3389/fimmu.2020.564077.
|
27. |
Wu J, Zhang C, Yang Q, et al. Imaging hyperreflective foci as an inflammatory biomarker after anti-VEGF treatment in neovascular age-related macular degeneration patients with optical coherence tomography angiography[J/OL]. BioMed Res Int, 2021, 2021: 6648191[2021-02-03]. https://pubmed.ncbi.nlm.nih.gov/33614783/. DOI: 10.1155/2021/6648191.
|
28. |
Kodjikian L, Bellocq D, Bandello F, et al. First-line treatment algorithm and guidelines in center-involving diabetic macular edema[J]. Eur J Ophthalmol, 2019, 29(6): 573-584. DOI: 10.1177/1120672119857511.
|
29. |
Qin HF, Shi FJ, Zhang CY, et al. Anti-VEGF reduces inflammatory features in macular edema secondary to retinal vein occlusion[J]. Int J ophthalmol, 2022, 15(8): 1296-1304. DOI: 10.18240/ijo.2022.08.11.
|
30. |
Rathnasamy G, Foulds WS, Ling EA, et al. Retinal microglia-a key player in healthy and diseased retina[J]. Prog Neurobiol, 2019, 173: 18-40. DOI: 10.1016/j.pneurobio.2018.05.006.
|
31. |
Silverman SM, Wong WT. Microglia in the retina: roles in development, maturity, and disease[J]. Annu Rev Vis Sci, 2018, 4: 45-77. DOI: 10.1146/annurev-vision-091517-034425.
|
32. |
Frizziero L, Midena G, Longhin E, et al. Early retinal changes by OCT angiography and multifocal electroretinography in diabetes[J/OL]. J Clin Med, 2020, 9(11): 3514[2020-10-30]. https://pubmed.ncbi.nlm.nih.gov/33143008/. DOI: 10.3390/jcm9113514.
|
33. |
Uddin MI, Kilburn TC, Duvall CL, et al. Visualizing HIF-1α mRNA in a subpopulation of bone marrow-derived cells to predict retinal neovascularization[J]. ACS Chem Biol, 2020, 15(11): 3004-3012. DOI: 10.1021/acschembio.0c00662.
|
34. |
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4): 195-206. DOI: 10.1038/s41574-020-00451-4.
|
35. |
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American diabetes association[J]. Diabetes Care, 2017, 40(3): 412-418. DOI: 10.2337/dc16-2641.
|
36. |
Nian S, Lo ACY, Mi Y, et al. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets[J]. Eye Vis (Lond), 2021, 8(1): 15. DOI: 10.1186/s40662-021-00239-1.
|
37. |
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies[J/OL]. JCI Insight, 2017, 2(14): e93751[2017-07-20]. https://pubmed.ncbi.nlm.nih.gov/28724805/. DOI: 10.1172/jci.insight.93751.
|
38. |
Church KA, Rodriguez D, Vanegas D, et al. Models of microglia depletion and replenishment elicit protective effects to alleviate vascular and neuronal damage in the diabetic murine retina[J]. J Neuroinflammation, 2022, 19(1): 300. DOI: 10.1186/s12974-022-02659-9.
|
39. |
Xiao Y, Hu X, Fan S, et al. Single-cell transcriptome profiling reveals the suppressive role of retinal neurons in microglia activation under diabetes mellitus[J/OL]. Front Cell Dev Biol, 2021, 9: 680947[2021-08-09]. https://pubmed.ncbi.nlm.nih.gov/34434927/. DOI: 10.3389/fcell.2021.680947.
|
40. |
Fan S, Yang Z, Liu Y, et al. Extensive sub-RPE complement deposition in a nonhuman primate model of early-stage diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 30. DOI: 10.1167/iovs.62.3.30.
|
41. |
Niu T, Fang J, Shi X, et al. Pathogenesis study based on high-throughput single-cell sequencing analysis reveals novel transcriptional landscape and heterogeneity of retinal cells in type 2 diabetic mice[J]. Diabetes, 2021, 70(5): 1185-1197. DOI: 10.2337/db20-0839.
|
42. |
Sun L, Wang R, Hu G, et al. Single cell RNA sequencing (scRNA-seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas[J/OL]. Exp Eye Res, 2021, 210: 108718[2021-08-06]. https://pubmed.ncbi.nlm.nih.gov/34364890/. DOI: 10.1016/j.exer.2021.108718.
|
43. |
Sergeys J, Etienne I, Van Hove I, et al. Longitudinal in vivo characterization of the streptozotocin-induced diabetic mouse model: focus on early inner retinal responses[J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 807-822. DOI: 10.1167/iovs.18-25372.
|
44. |
Karlstetter M, Scholz R, Rutar M, et al. Retinal microglia: just bystander or target for therapy?[J]. Prog Retin Eye Res, 2015, 45: 30-57. DOI: 10.1016/j.preteyeres.2014.11.004.
|
45. |
Madjedi K, Pereira A, Ballios BG, et al. Switching between anti-VEGF agents in the management of refractory diabetic macular edema: a systematic review[J]. Surv Ophthalmol, 2022, 67(5): 1364-1372. DOI: 10.1016/j.survophthal.2022.04.001.
|
46. |
Osaadon P, Fagan XJ, Lifshitz T, et al. A review of anti-VEGF agents for proliferative diabetic retinopathy[J]. Eye (Lond), 2014, 28(5): 510-520. DOI: 10.1038/eye.2014.13.
|
47. |
Tan Y, Fukutomi A, Sun MT, et al. Anti-VEGF crunch syndrome in proliferative diabetic retinopathy: a review[J]. Surv Ophthalmol, 2021, 66(6): 926-932. DOI: 10.1016/j.survophthal.2021.03.001.
|
48. |
Bai Q, Wang X, Yan H, et al. Microglia-derived Spp1 promotes pathological retinal neovascularization via activating endothelial Kit/Akt/mTOR signaling[J]. J Pers Med, 2023, 13(1): 146. DOI: 10.3390/jpm13010146.
|
49. |
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain[J]. Mol Psychiatry, 2020, 25(2): 351-367. DOI: 10.1038/s41380-019-0609-8.
|
50. |
Masuda T, Sankowski R, Staszewski O, et al. Microglia heterogeneity in the single-cell era[J]. Cell Rep, 2020, 30(5): 1271-1281. DOI: 10.1016/j.celrep.2020.01.010.
|
51. |
Wang L, Wu H, Zhang S, et al. Microglia heterogeneity: a single-cell concerto[J]. Hum Brain, 2022, 1(1): 77-91. DOI: 10.37819/hb.001.001.0208.
|
52. |
Gupta RK, Kuznicki J. Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing[J/OL]. Cells, 2020, 9(8): 1751[2020-07-22]. https://pubmed.ncbi.nlm.nih.gov/32707839/. DOI: 10.3390/cells9081751.
|
53. |
Hasel P, Aisenberg WH, Bennett FC, et al. Molecular and metabolic heterogeneity of astrocytes and microglia[J]. Cell Metab, 2023, 35(4): 555-570. DOI: 10.1016/j.cmet.2023.03.006.
|