1. |
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome[J]. Nature, 2013, 493(7430): 45-50. DOI: 10.1038/nature11711.
|
2. |
Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota[J]. World J Gastroenterol, 2015, 21(29): 8787-803. DOI: 10.3748/wjg.v21.i29.8787.
|
3. |
Allayee H, Hazen SL. Contribution of gut bacteria to lipid levels: another metabolic role for microbes?[J]. Circ Res, 2015, 117(9): 750-754. DOI: 10.1161/CIRCRESAHA.115.307409.
|
4. |
Nemet I, Saha PP, Gupta N, et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors[J]. Cell, 2020, 180(5): 862-877. DOI: 10.1016/j.cell.2020.02.016.
|
5. |
Tanase DM, Gosav EM, Neculae E, et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM)[J/OL]. Nutrients, 2020, 12(12): 3719[2020-12-02]. https://pubmed.ncbi.nlm.nih.gov/33276482/. DOI: 10.3390/nu12123719.
|
6. |
Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54. DOI: 10.1038/s41577-019-0198-4.
|
7. |
Scuderi G, Troiani E, Minnella AM. Gut microbiome in retina health: the crucial role of the gut-retina axis[J/OL]. Front Microbiol, 2022, 12: 726792[2022-01-14]. https://pubmed.ncbi.nlm.nih.gov/35095780/. DOI: 10.3389/fmicb.2021.726792.
|
8. |
Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013, 498(7452): 99-103. DOI: 10.1038/nature12198.
|
9. |
Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J/OL]. PLoS One, 2010, 5(2): e9085[2010-02-05]. https://pubmed.ncbi.nlm.nih.gov/20140211/. DOI: 10.1371/journal.pone.0009085.
|
10. |
Wu H, Tremaroli V, Schmidt C, et al. The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study[J]. Cell Metab, 2020, 32(3): 379-390. DOI: 10.1016/j.cmet.2020.06.011.
|
11. |
Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood[J]. Gut, 1987, 28(10): 1221-1227. DOI: 10.1136/gut.28.10.1221.
|
12. |
Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier[J]. Pediatr Res, 2007, 61(1): 37-41. DOI: 10.1203/01.pdr.0000250014.92242.f3.
|
13. |
Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. DOI: 10.1007/s10620-012-2259-4.
|
14. |
Zhang L, Chu J, Hao W, et al. Gut microbiota and type 2 diabetes mellitus: association, mechanism, and translational applications[J/OL]. Mediators Inflamm, 2021, 2021: 5110276[2021-08-17]. https://pubmed.ncbi.nlm.nih.gov/34447287/. DOI: 10.1155/2021/5110276.
|
15. |
Matheus VA, Monteiro L, Oliveira RB, et al. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice[J]. Exp Biol Med (Maywood), 2017, 242(12): 1214-1226. DOI: 10.1177/1535370217708188.
|
16. |
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J]. Diabetes, 2012, 61(2): 364-371. DOI: 10.2337/db11-1019.
|
17. |
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature, 2015, 528(7581): 262-266. DOI: 10.1038/nature15766.
|
18. |
Sun L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24(12): 1919-1929. DOI: 10.1038/s41591-018-0222-4.
|
19. |
Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus[J]. J Diabetes, 2015, 7(5): 729-739. DOI: 10.1111/1753-0407.12232.
|
20. |
Baxter NT, Lesniak NA, Sinani H, et al. The glucoamylase inhibitor acarbose has a diet-dependent and reversible effect on the murine gut microbiome[J/OL]. mSphere, 2019, 4(1): e00528-18[2019-02-06]. https://pubmed.ncbi.nlm.nih.gov/30728281/. DOI: 10.1128/mSphere.00528-18.
|
21. |
Das T, Jayasudha R, Chakravarthy S, et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy[J/OL]. Sci Rep, 2021, 11(1): 2738[2021-02-02]. https://pubmed.ncbi.nlm.nih.gov/33531650/. DOI: 10.1038/s41598-021-82538-0.
|
22. |
Padakandla SR, Das T, Sai Prashanthi G, et al. Gut mycobiome dysbiosis in rats showing retinal changes indicative of diabetic retinopathy[J/OL]. PLoS One, 2022, 17(4): e0267080[2022-04-19]. https://pubmed.ncbi.nlm.nih.gov/35439275/. DOI: 10.1371/journal.pone.0267080.
|
23. |
Huang Y, Wang Z, Ma H, et al. Dysbiosis and implication of the gut microbiota in diabetic retinopathy[J/OL]. Front Cell Infect Microbiol, 2021, 11: 646348[2021-03-19]. https://pubmed.ncbi.nlm.nih.gov/33816351/. DOI: 10.3389/fcimb.2021.646348.
|
24. |
Vagaja NN, Binz N, McLenachan S, et al. Influence of endotoxin-mediated retinal inflammation on phenotype of diabetic retinopathy in Ins2 Akita mice[J]. Br J Ophthalmol, 2013, 97(10): 1343-1350. DOI: 10.1136/bjophthalmol-2013-303201.
|
25. |
Hao L, Michaelsen TY, Singleton CM, et al. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics[J]. ISME J, 2020, 14(4): 906-918. DOI: 10.1038/s41396-019-0571-0.
|
26. |
Beli E, Yan Y, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice[J]. Diabetes, 2018, 67(9): 1867-1879. DOI: 10.2337/db18-0158.
|
27. |
Ye P, Zhang X, Xu Y, et al. Alterations of the gut microbiome and metabolome in patients with proliferative diabetic retinopathy[J/OL]. Front Microbiol, 2021, 12: 667632[2021-09-08]. https://pubmed.ncbi.nlm.nih.gov/34566901/. DOI: 10.3389/fmicb.2021.667632.
|
28. |
Liu H, Zhang H, Wang X, et al. The family coriobacteriaceae is a potential contributor to the beneficial effects of Roux-en-Y gastric bypass on type 2 diabetes[J]. Surg Obes Relat Dis, 2018, 14(5): 584-593. DOI: 10.1016/j.soard.2018.01.012.
|
29. |
Scheiman J, Luber JM, Chavkin TA, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism[J]. Nat Med, 2019, 25(7): 1104-1109. DOI: 10.1038/s41591-019-0485-4.
|
30. |
Khan R, Sharma A, Ravikumar R, et al. Association between gut microbial abundance and sight-threatening diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2021, 62(7): 19. DOI: 10.1167/iovs.62.7.19.
|
31. |
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772. DOI: 10.2337/db06-1491.
|
32. |
Kokona D, Ebneter A, Escher P, et al. Colony-stimulating factor 1 receptor inhibition prevents disruption of the blood-retina barrier during chronic inflammation[J]. J Neuroinflammation, 2018, 15(1): 340. DOI: 10.1186/s12974-018-1373-4.
|
33. |
Hernández C, Ortega F, García-Ramírez M, et al. Lipopolysaccharide-binding protein and soluble CD14 in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Retina, 2010, 30(2): 345-352. DOI: 10.1097/iae.0b013e3181b7738b.
|
34. |
Zhou L, Xu Z, Oh Y, et al. Myeloid cell modulation by a GLP-1 receptor agonist regulates retinal angiogenesis in ischemic retinopathy[J/OL]. JCI Insight, 2021, 6(23): e93382[2021-12-08]. https://pubmed.ncbi.nlm.nih.gov/34673570/. DOI: 10.1172/jci.insight.93382.
|
35. |
Cai X, Li J, Wang M, et al. GLP-1 treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway[J]. Int J Med Sci, 2017, 14(12): 1203-1212. DOI: 10.7150/ijms.20962.
|
36. |
Zhou HR, Ma XF, Lin WJ, et al. Neuroprotective role of GLP-1 analog for retinal ganglion cells via PINK1/Parkin-mediated mitophagy in diabetic retinopathy[J/OL]. Front Pharmacol, 2021, 11: 589114[2021-02-12]. https://pubmed.ncbi.nlm.nih.gov/33679385/. DOI: 10.3389/fphar.2020.589114.
|
37. |
Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism[J]. Hepatology, 2018, 68(4): 1574-1588. DOI: 10.1002/hep.29857.
|
38. |
Zhang MY, Zhu L, Zheng X, et al. TGR5 activation ameliorates mitochondrial homeostasis via regulating the PKCδ/Drp1-HK2 signaling in diabetic retinopathy[J/OL]. Front Cell Dev Biol, 2022, 9: 759421[2022-02-14].https://pubmed.ncbi.nlm.nih.gov/35096809/. DOI: 10.3389/fcell.2021.759421.
|
39. |
Chung YR, Choi JA, Koh JY, et al. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J/OL]. J Diabetes Res, 2017, 2017: 1763292[2017-01-03]. https://pubmed.ncbi.nlm.nih.gov/28127564/. DOI: 10.1155/2017/1763292.
|
40. |
Shiraya T, Araki F, Ueta T, et al. Ursodeoxycholic acid attenuates the retinal vascular abnormalities in anti-PDGFR-β antibody-induced pericyte depletion mouse models[J/OL]. Sci Rep, 2020, 10(1): 977[2020-01-22].https://pubmed.ncbi.nlm.nih.gov/31969665/. DOI: 10.1038/s41598-020-58039-x.
|
41. |
Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J]. Cell Metab, 2009, 9(4): 311-326. DOI: 10.1016/j.cmet.2009.02.002.
|
42. |
Ola MS, Alhomida AS, LaNoue KF. Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina[J]. Neurotox Res, 2019, 36(1): 81-90. DOI: 10.1007/s12640-019-00018-w.
|
43. |
Chen T, Ni Y, Ma X, et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations[J/OL]. Sci Rep, 2016, 6: 20594[2016-02-05]. https://pubmed.ncbi.nlm.nih.gov/26846565/. DOI: 10.1038/srep20594.
|
44. |
Liu W, Wang C, Xia Y, et al. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy[J]. Acta Diabetol, 2021, 58(2): 221-229. DOI: 10.1007/s00592-020-01610-9.
|
45. |
Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost Trial[J]. Gut, 2019, 68(2): 263-270. DOI: 10.1136/gutjnl-2018-316155.
|
46. |
Chen ML, Zhu XH, Ran L, et al. Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway[J/OL]. J Am Heart Assoc, 2017, 6(9): e006347[2017-09-04]. https://pubmed.ncbi.nlm.nih.gov/28871042/. DOI: 10.1161/JAHA.117.006347.
|
47. |
Rohrmann S, Linseisen J, Allenspach M, et al. Plasma concentrations of Trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population[J]. J Nutr, 2016, 146(2): 283-289. DOI: 10.3945/jn.115.220103.
|
48. |
Iatsenko I, Boquete JP, Lemaitre B. Microbiota-derived lactate activates production of reactive oxygen species by the intestinal NADPH oxidase nox and shortens drosophila lifespan[J]. Immunity, 2018, 49(5): 929-942. DOI: 10.1016/j.immuni.2018.09.017.
|
49. |
Duan Y, Prasad R, Feng D, et al. Bone marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 deficiency[J]. Circ Res, 2019, 125(11): 969-988. DOI: 10.1161/CIRCRESAHA.119.315743.
|