- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China;
Uveal melanoma (UM) is one of the most common primary intraocular malignancy in adults. The incidence of UM is lower in Asia than in Europe and the United States, however, the age of onset of UM patients in Asia is earlier than in the European and American populations. With the improvement of economic living standards in recent years, UM as a rare intraocular tumor has been gradually recognized by the public. In the past 10 years, the research of UM in China has been characterized by a large number and rapid development. Among them, the direction of molecular genetics represented by non-coding RNA, the frontier development of potential anticancer drugs for UM and Chinese traditional medicines are the research hotspots for scholars in China. In the past 10 years, China has made a relatively complete understanding and research progress on the pathogenesis, diagnosis and treatment of UM. On the other hand, compared with European and American countries, China still lacks in frontier research such as immunotherapy. With the further efforts of Chinese ophthalmology researchers and research teams, and with the further development of scientific research in my country, it is believed that the mechanism affecting tumors can be further elucidated, providing more possibilities for treatment and improving the prognosis of UM patients in China.
Citation: Liang Chuqiao, Luo Jingting, Li Yang, Wei Wenbin. Clinical research status and progress of uveal melanoma in China of 2011-2021. Chinese Journal of Ocular Fundus Diseases, 2022, 38(3): 242-247. doi: 10.3760/cma.j.cn511434-20220131-00062 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Shields CL, Kels JG, Shields JA. Melanoma of the eye: revealing hidden secrets, one at a time[J]. Clin Dermatol, 2015, 33(2): 183-196. DOI: 10.1016/j.clindermatol.2014.10.010. |
2. | Shields CL, Kaliki S, Shah SU, et al. Iris melanoma: features and prognosis in 317 children and adults[J]. J AAPOS, 2012, 16(1): 10-16. DOI: 10.1016/j.jaapos.2011.10.012. |
3. | Manchegowda P, Singh AD, Shields C, et al. Uveal melanoma in asians: a review[J]. Ocul Oncol Pathol, 2021, 7(3): 159-167. DOI: 10.1159/000512738. |
4. | Zhang H, Liu Y, Zhang K, et al. Validation of the relationship between iris color and uveal melanoma using artificial intelligence with multiple paths in a large chinese population[J/OL]. Front Cell Dev Biol, 2021, 9: 713209[2021-08-19]. https://pubmed.ncbi.nlm.nih.gov/34490264/. DOI: 10.3389/fcell.2021.713209. |
5. | Nayman T, Bostan C, Logan P, et al. Uveal melanoma risk factors: a systematic review of meta-analyses[J]. Curr Eye Res, 2017, 42(8): 1085-1093. DOI: 10.1080/02713683.2017.1297997. |
6. | Singh AD, De Potter P, Fijal BA, et al. Lifetime prevalence of uveal melanoma in white patients with oculo (dermal) melanocytosis[J]. Ophthalmology, 1998, 105(1): 195-198. DOI: 10.1016/s0161-6420(98)92205-9. |
7. | Zhou N, Zhang R, Liu Y, et al. Clinical characteristics of UM and association of metastasis of uveal melanoma with congenital oculocutaneous melanosis in Asian patients: analysis of 1 151 consecutive eyes[J]. Ophthalmol Retina, 2021, 5(11): 1164-1172. DOI: 10.1016/j.oret.2021.01.001. |
8. | Shi K, Bing ZT, Cao GQ, et al. Identify the signature genes for diagnose of uveal melanoma by weight gene co-expression network analysis[J]. Int J Ophthalmol, 2015, 8(2): 269-274. DOI: 10.3980/j.issn.2222-3959.2015.02.10. |
9. | Wang F, Wang Q, Li N, et al. OSuvm: an interactive online consensus survival tool for uveal melanoma prognosis analysis[J]. Mol Carcinog, 2020, 59(1): 56-61. DOI: 10.1002/mc.23128. |
10. | Zeng Q, Yao Y, Zhao M. Development and validation of a nomogram to predict cancer-specific survival of uveal melanoma[J]. BMC Ophthalmol, 2021, 21(1): 230. DOI: 10.1186/s12886-021-01968-6. |
11. | Hou C, Xiao L, Ren X, et al. Mutations of GNAQ, GNA11, SF3B1, EIF1AX, PLCB4 and CYSLTR in uveal melanoma in Chinese patients[J]. Ophthalmic Res, 2020, 63(3): 358-368. DOI: 10.1159/000502888. |
12. | 何继才, 杨荣琴, 彭睿. 四川地区脉络膜黑色素瘤患者GNAQ, GNA11基因突变检测[J]. 眼科学报, 2019, 34(2): 99-102. DOI: 10.3978/j.issn.1000-4432.2019.05.04.He JC, Yang RQ, Peng R. Genetic analyses of GNAQ and GNA11 mutation in uveal melanoma in Sichuan[J]. Eye Science, 2019, 34(2): 99-102. DOI: 10.3978/j.issn.1000-4432.2019.05.04. |
13. | Yu J, Wu X, Yan J, et al. Potential mutations in uveal melanoma identified using targeted next-generation sequencing[J]. J Cancer, 2019, 10(2): 488-493. DOI: 10.7150/jca.26967. |
14. | 李洋, 冯宇, 刘月明, 等. BAP1、FOXO3和ITPR2基因表达变化与葡萄膜黑色素瘤转移和预后关联分析[J]. 中华实验眼科杂志, 2021, 39(8): 700-707. DOI: 10.3760/cma.j.cn115989-20200714-00495.Li Y, Feng Y, Liu YM, et al. Relationship between BAP1, FOXO3 and ITPR2 gene expression and metastasis and prognosis of uveal melanoma[J]. Chin J Exp Ophthalmol, 2021, 39(8): 700-707. DOI: 10.3760/cma.j.cn115989-20200714-00495. |
15. | Chen Y, Lu X, Montoya-Durango DE, et al. ZEB1 regulates multiple oncogenic components involved in uveal melanoma progression[J/OL]. Sci Rep, 2017, 7(1): 45[2017-03-03]. https://pubmed.ncbi.nlm.nih.gov/28246385/. DOI: 10.1038/s41598-017-00079-x. |
16. | Wang Y, Bao X, Zhang Z, et al. FGF2 promotes metastasis of uveal melanoma cells via store-operated calcium entry[J]. Onco Targets Ther, 2017, 10: 5317-5328. DOI: 10.2147/OTT.S136677. |
17. | Hao L, Yin J, Yang H, et al. ALKBH5-mediated m(6)A demethylation of FOXM1 mRNA promotes progression of uveal melanoma[J]. Aging (Albany NY), 2021, 13(3): 4045-4062. DOI: 10.18632/aging.202371. |
18. | Ding X, Wang L, Chen M, et al. Sperm-specific glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase regulated by transcription factor SOX10 to promote uveal melanoma tumorigenesis[J/OL]. Front Cell Dev Biol, 2021, 9: 610683[2021-07-25]. https://pubmed.ncbi.nlm.nih.gov/34249897/. DOI: 10.3389/fcell.2021.610683. |
19. | Wang P, Yang X, Zhou N, et al. Identifying a potential key gene, TIMP1, associated with liver metastases of uveal melanoma by weight gene co-expression network analysis[J]. Onco Targets Ther, 2020, 13: 11923-11934. DOI: 10.2147/OTT.S280435. |
20. | Wei C, Zhao X, Wang L, et al. TRIP suppresses cell proliferation and invasion in choroidal melanoma via promoting the proteasomal degradation of Twist1[J]. Febs Lett, 2020, 594(19): 3170-3181. DOI: 10.1002/1873-3468.13882. |
21. | Wu S, Han M, Zhang C. Overexpression of microRNA-130a represses uveal melanoma cell migration and invasion through inactivation of the Wnt/beta-catenin signaling pathway by downregulating USP6[J/OL]. Cancer Gene Ther, 2021(2022-01-31)[2021-09-14]. https://pubmed.ncbi.nlm.nih.gov/34522027/. DOI: 10.1038/s41417-021-00377-7. [published online ahead of print]. |
22. | Li Y, Zhang M, Feng H, et al. The tumorigenic properties of EZH2 are mediated by miR-26a in uveal melanoma[J/OL]. Front Mol Biosci, 2021, 8: 713542[2021-07-26]. https://pubmed.ncbi.nlm.nih.gov/34381816/. DOI: 10.3389/fmolb.2021.713542. |
23. | Lu L, Yu X, Zhang L, et al. The long non-coding RNA RHPN1-AS1 promotes uveal melanoma progression[J]. Int J Mol Sci, 2017, 18(1): 226. DOI: 10.3390/ijms18010226. |
24. | Hou Q, Han S, Yang L, et al. The interplay of microRNA-34a, LGR4, EMT-Associated factors, and MMP2 in regulating uveal melanoma cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4503-4510. DOI: 10.1167/iovs.18-26477. |
25. | Chen X, Wang J, Shen H, et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1193-1199. DOI: 10.1167/iovs.10-5272. |
26. | Wu S, Chen H, Zuo L, et al. Suppression of long non-coding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4[J]. Am J Physiol Cell Physiol, 2020, 318(5): C903-C912. DOI: 10.1152/ajpcell.00262.2019. |
27. | Li P, He J, Yang Z, et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression[J]. Autophagy, 2020, 16(7): 1186-1199. DOI: 10.1080/15548627.2019.1659614. |
28. | Wu S, Chen H, Han N, et al. Long noncoding RNA PVT1 silencing prevents the development of uveal melanoma by impairing microRNA-17-3p-dependent MDM2 upregulation[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4904-4914. DOI: 10.1167/iovs.19-27704. |
29. | Ding X, Wang X, Lin M, et al. PAUPAR lncRNA suppresses tumourigenesis by H3K4 demethylation in uveal melanoma[J]. Febs Lett, 2016, 590(12): 1729-1738. DOI: 10.1002/1873-3468.12220. |
30. | 杨文利. 超声造影在眼内肿瘤诊断的应用[J]. 中国医疗器械信息, 2012, 18(6): 6-8. DOI: 10.15971/j.cnki.cmdi.2012.06.007.Yang WL. Contrast enhanced ultrasound in the diagnoosis of intraocular tumors application[J]. China Medical Device Information, 2012, 18(6): 6-8. DOI: 10.15971/j.cnki.cmdi.2012.06.007. |
31. | 杨文利, 李栋军, 魏文斌. 超声造影剂时间-强度曲线在眼内肿瘤诊断及鉴别诊断的应用[J]. 中华眼底病杂志, 2012, 28(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2012.06.006.Yang WL, Li DJ, Wei WB. Time-intensity curve of contrast agent in intraocular tumor diagnosis and differential diagnosis[J]. Chin J Ocul Fundus Dis, 2012, 28(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2012.06.006. |
32. | 陈伟, 杨文利, 李栋军, 等. 超声弹性成像对眼内肿瘤的鉴别诊断价值[J]. 肿瘤影像学, 2016, 25(4): 303-307. DOI: 10.3969/j.issn.1008-617X.2016.04.003.Chen W, Yang WL, Li DJ, et al. Value of ultrasonic elastosonography in differential diagnosis of intraocular tumors[J]. Oncoradiology, 2016, 25(4): 303-307. DOI: 10.3969/j.issn.1008-617X.2016.04.003. |
33. | 孙明霞, 陈青华, 顼晓琳, 等. 成人眼球内葡萄膜黑色素瘤与非黑色素瘤MRI比较研究[J]. 中华放射学杂志, 2020, 54(3): 181-186. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.002.Sun MX, Chen QH, Xu XL, et al. Value of MRI in the differential diagnosis of uveal melanoma and other intraocular masses in adults[J]. Chin J Radiol, 2020, 54(3): 181-186. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.002. |
34. | Su Y, Xu X, Wei W, et al. Using a novel MR imaging sign to differentiate retinal pigment epithelium from uveal melanoma[J]. Neuroradiology, 2020, 62(3): 347-352. DOI: 10.1007/s00234-019-02353-3. |
35. | 张举, 魏文斌, 李彬, 等. 葡萄膜黑色素瘤和视网膜组织相关性的病理学分析[J]. 国际眼科杂志, 2020, 20(2): 197-202. DOI: 10.3980/j.issn.1672-5123.2020.2.02.Zhang J, Wei WB, Li B, et al. Histopathological analysis of the correlation between uveal melanomas and retinal tissue[J]. Int Eye Sci, 2020, 20(2): 197-202. DOI: 10.3980/j.issn.1672-5123.2020.2.02. |
36. | 张举, 顼晓琳, 李彬, 等. 葡萄膜黑色素瘤瘤体生长对视网膜和巩膜浸润的影响[J]. 中华眼科杂志, 2016, 52(10): 749-754. DOI: 10.3760/cma.j.issn.0412-4081.2016.10.007.Zhang J, Xu XL, Li B, et al. Characteristics of retinal and scleral infiltration in uveal melanoma[J]. Chin J Ophthalmol, 2016, 52(10): 749-754. DOI: 10.3760/cma.j.issn.0412-4081.2016.10.007. |
37. | 杨晋波, 郑增光, 杨世峰, 等. 组织内AEG-1表达情况对葡萄膜黑色素瘤病理特征的影响[J]. 中国现代医生, 2020, 58(22): 139-142.Yang JB, Zheng ZG, Yang SF, et al. Effect of AEG-1 expression in tissues on pathology features of uveal melanoma[J]. China Modern Doctor, 2020, 58(22): 139-142. |
38. | Song H, Xu Q, Zhu Y, et al. Serum adsorption, cellular internalization and consequent impact of cuprous oxide nanoparticles on uveal melanoma cells: implications for cancer therapy[J]. Nanomedicine (Lond), 2015, 10(24): 3547-3562. DOI: 10.2217/nnm.15.178. |
39. | Shan S, Jia S, Lawson T, et al. The use of TAT peptide-functionalized graphene as a highly nuclear-targeting carrier system for suppression of choroidal melanoma[J/OL]. Int J Mol Sci, 2019, 20(18): 4454[2019-09-10]. https://pubmed.ncbi.nlm.nih.gov/31509978/. DOI: 10.3390/ijms20184454. |
40. | Li Y, He J, Qiu C, et al. The oncolytic virus H101 combined with GNAQ siRNA-mediated knockdown reduces uveal melanoma cell viability[J]. J Cell Biochem, 2019, 120(4): 5766-5776. DOI: 10.1002/jcb.27863. |
41. | Liu S, Song W, Liu F, et al. Antitumor efficacy of VP22-CD/5-FC suicide gene system mediated by lentivirus in a murine uveal melanoma model[J]. Exp Eye Res, 2018, 172: 144-151. DOI: 10.1016/j.exer.2018.04.009. |
42. | Gong Q, Wan Q, Li A, et al. Development and validation of an immune and stromal prognostic signature in uveal melanoma to guide clinical therapy[J]. Aging (Albany NY), 2020, 12(20): 20254-20267. DOI: 10.18632/aging.103779. |
43. | Zhang Z, Su J, Li L, et al. Identification of precise therapeutic targets and characteristic prognostic genes based on immune gene characteristics in uveal melanoma[J/OL]. Front Cell Dev Biol, 2021, 9: 666462[2021-05-26]. https://pubmed.ncbi.nlm.nih.gov/34124047/. DOI: 10.3389/fcell.2021.666462. |
44. | Zhou J, Liu S, Wang Y, et al. Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma[J]. Mol Cancer, 2019, 18(1): 159. DOI: 10.1186/s12943-019-1068-1. |
45. | Zhang L, Huang X, Guo T, et al. Study of cinobufagin as a promising anticancer agent in uveal melanoma through intrinsic apoptosis pathway[J/OL]. Front Oncol, 2020, 10: 325[2020-04-02]. https://pubmed.ncbi.nlm.nih.gov/32300551/. DOI: 10.3389/fonc.2020.00325. |
46. | Xue C, Chen Y, Hu DN, et al. Chrysin induces cell apoptosis in human uveal melanoma cells via intrinsic apoptosis[J]. Oncol Lett, 2016, 12(6): 4813-4820. DOI: 10.3892/ol.2016.5251. |
47. | Yan F, Liao R, Silva M, et al. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway[J]. J Cell Mol Med, 2020, 24(11): 6208-6219. DOI: 10.1111/jcmm.15249. |
48. | Shi ML, Chen YF, Wu WQ, et al. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro[J/OL]. Exp Eye Res, 2021, 210: 108643[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058231/. DOI: 10.1016/j.exer.2021.108643. |
49. | Zhang Q, Zhang Q, Li H, et al. LiCl induces apoptosis via CHOP/NOXA/Mcl-1 axis in human choroidal melanoma cells[J]. Cancer Cell Int, 2021, 21(1): 96. DOI: 10.1186/s12935-021-01778-2. |
50. | Juan L, Diandian W, Jianfeng W, et al. Efficient anticancer effect on choroidal melanoma cells induced by tanshinone ⅡA photosensitization[J]. Photochem Photobiol, 2021, 97(4): 841-850. DOI: 10.1111/php.13399. |
51. | Dong L, You S, Zhang Q, et al. Arylsulfonamide 64B inhibits hypoxia/HIF-Induced expression of c-Met and CXCR4 and reduces primary tumor growth and metastasis of uveal melanoma[J]. Clin Cancer Res, 2019, 25(7): 2206-2218. DOI: 10.1158/1078-0432.CCR-18-1368. |
52. | Geng B, Zhu Y, Yuan Y, et al. Artesunate suppresses choroidal melanoma vasculogenic mimicry formation and angiogenesis via the Wnt/CaMKII signaling axis[J/OL]. Front Oncol, 2021, 11: 714646[2021-08-12]. https://pubmed.ncbi.nlm.nih.gov/34476217/. DOI: 10.3389/fonc.2021.714646. |
53. | Yang JY, Wang Q, Chen MX, et al. Retinal microvascular changes in uveal melanoma following conbercept injection after plaque radiotherapy as detected by optical coherence tomographic angiography[J]. Retina, 2021, 41(12): 2605-2611. DOI: 10.1097/IAE.0000000000003236. |
54. | 王倩, 杨婧研, 刘月明, 等. 脉络膜黑色素瘤局部放射治疗后黄斑部视网膜脉络膜血流变化的研究[J]. 眼科, 2021, 30(2): 102-107. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.005.Wang Q, Yang JY, Liu YM, et al. Longitudinal detection of radiation-induced macular retinal and choroidal capillary density changes with OCT angiography in choroidal melanoma[J]. Ophthalmology in China, 2021, 30(2): 102-107. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.005. |
55. | Fang R, Wang H, Li Y, et al. Regression patterns of uveal melanoma after iodine-125 plaque brachytherapy[J]. BMC Ophthalmol, 2021, 21(1): 137. DOI: 10.1186/s12886-021-01898-3. |
56. | Hong M, Wei W, Hua L, et al. Clinical observation of local resection or enucleation for uveal melanoma[J]. Chin Med J (Engl), 2014, 127(19): 3459-3463. DOI: 10.3760/cma.j.issn.0366-6999.20141332. |
57. | Yue H, Qian J, Yuan Y, et al. Clinicopathological characteristics and prognosis for survival after enucleation of uveal melanoma in chinese patients: long-term follow-up[J]. Curr Eye Res, 2017, 42(5): 759-765. DOI: 10.1080/02713683.2016.1245422. |
58. | Dai W, Liu S, Wang S, et al. Activation of transmembrane receptor tyrosine kinase DDR1-STAT3 cascade by extracellular matrix remodeling promotes liver metastatic colonization in uveal melanoma[J]. Signal Transduct Target Ther, 2021, 6(1): 176. DOI: 10.1038/s41392-021-00563-x. |
59. | Zhang J, Liu S, Ye Q, et al. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma[J]. Mol Cancer, 2019, 18(1): 140. DOI: 10.1186/s12943-019-1070-7. |
60. | Jin B, Zhang P, Zou H, et al. Verification of EZH2 as a druggable target in metastatic uveal melanoma[J]. Mol Cancer, 2020, 19(1): 52. DOI: 10.1186/s12943-020-01173-x. |
- 1. Shields CL, Kels JG, Shields JA. Melanoma of the eye: revealing hidden secrets, one at a time[J]. Clin Dermatol, 2015, 33(2): 183-196. DOI: 10.1016/j.clindermatol.2014.10.010.
- 2. Shields CL, Kaliki S, Shah SU, et al. Iris melanoma: features and prognosis in 317 children and adults[J]. J AAPOS, 2012, 16(1): 10-16. DOI: 10.1016/j.jaapos.2011.10.012.
- 3. Manchegowda P, Singh AD, Shields C, et al. Uveal melanoma in asians: a review[J]. Ocul Oncol Pathol, 2021, 7(3): 159-167. DOI: 10.1159/000512738.
- 4. Zhang H, Liu Y, Zhang K, et al. Validation of the relationship between iris color and uveal melanoma using artificial intelligence with multiple paths in a large chinese population[J/OL]. Front Cell Dev Biol, 2021, 9: 713209[2021-08-19]. https://pubmed.ncbi.nlm.nih.gov/34490264/. DOI: 10.3389/fcell.2021.713209.
- 5. Nayman T, Bostan C, Logan P, et al. Uveal melanoma risk factors: a systematic review of meta-analyses[J]. Curr Eye Res, 2017, 42(8): 1085-1093. DOI: 10.1080/02713683.2017.1297997.
- 6. Singh AD, De Potter P, Fijal BA, et al. Lifetime prevalence of uveal melanoma in white patients with oculo (dermal) melanocytosis[J]. Ophthalmology, 1998, 105(1): 195-198. DOI: 10.1016/s0161-6420(98)92205-9.
- 7. Zhou N, Zhang R, Liu Y, et al. Clinical characteristics of UM and association of metastasis of uveal melanoma with congenital oculocutaneous melanosis in Asian patients: analysis of 1 151 consecutive eyes[J]. Ophthalmol Retina, 2021, 5(11): 1164-1172. DOI: 10.1016/j.oret.2021.01.001.
- 8. Shi K, Bing ZT, Cao GQ, et al. Identify the signature genes for diagnose of uveal melanoma by weight gene co-expression network analysis[J]. Int J Ophthalmol, 2015, 8(2): 269-274. DOI: 10.3980/j.issn.2222-3959.2015.02.10.
- 9. Wang F, Wang Q, Li N, et al. OSuvm: an interactive online consensus survival tool for uveal melanoma prognosis analysis[J]. Mol Carcinog, 2020, 59(1): 56-61. DOI: 10.1002/mc.23128.
- 10. Zeng Q, Yao Y, Zhao M. Development and validation of a nomogram to predict cancer-specific survival of uveal melanoma[J]. BMC Ophthalmol, 2021, 21(1): 230. DOI: 10.1186/s12886-021-01968-6.
- 11. Hou C, Xiao L, Ren X, et al. Mutations of GNAQ, GNA11, SF3B1, EIF1AX, PLCB4 and CYSLTR in uveal melanoma in Chinese patients[J]. Ophthalmic Res, 2020, 63(3): 358-368. DOI: 10.1159/000502888.
- 12. 何继才, 杨荣琴, 彭睿. 四川地区脉络膜黑色素瘤患者GNAQ, GNA11基因突变检测[J]. 眼科学报, 2019, 34(2): 99-102. DOI: 10.3978/j.issn.1000-4432.2019.05.04.He JC, Yang RQ, Peng R. Genetic analyses of GNAQ and GNA11 mutation in uveal melanoma in Sichuan[J]. Eye Science, 2019, 34(2): 99-102. DOI: 10.3978/j.issn.1000-4432.2019.05.04.
- 13. Yu J, Wu X, Yan J, et al. Potential mutations in uveal melanoma identified using targeted next-generation sequencing[J]. J Cancer, 2019, 10(2): 488-493. DOI: 10.7150/jca.26967.
- 14. 李洋, 冯宇, 刘月明, 等. BAP1、FOXO3和ITPR2基因表达变化与葡萄膜黑色素瘤转移和预后关联分析[J]. 中华实验眼科杂志, 2021, 39(8): 700-707. DOI: 10.3760/cma.j.cn115989-20200714-00495.Li Y, Feng Y, Liu YM, et al. Relationship between BAP1, FOXO3 and ITPR2 gene expression and metastasis and prognosis of uveal melanoma[J]. Chin J Exp Ophthalmol, 2021, 39(8): 700-707. DOI: 10.3760/cma.j.cn115989-20200714-00495.
- 15. Chen Y, Lu X, Montoya-Durango DE, et al. ZEB1 regulates multiple oncogenic components involved in uveal melanoma progression[J/OL]. Sci Rep, 2017, 7(1): 45[2017-03-03]. https://pubmed.ncbi.nlm.nih.gov/28246385/. DOI: 10.1038/s41598-017-00079-x.
- 16. Wang Y, Bao X, Zhang Z, et al. FGF2 promotes metastasis of uveal melanoma cells via store-operated calcium entry[J]. Onco Targets Ther, 2017, 10: 5317-5328. DOI: 10.2147/OTT.S136677.
- 17. Hao L, Yin J, Yang H, et al. ALKBH5-mediated m(6)A demethylation of FOXM1 mRNA promotes progression of uveal melanoma[J]. Aging (Albany NY), 2021, 13(3): 4045-4062. DOI: 10.18632/aging.202371.
- 18. Ding X, Wang L, Chen M, et al. Sperm-specific glycolysis enzyme glyceraldehyde-3-phosphate dehydrogenase regulated by transcription factor SOX10 to promote uveal melanoma tumorigenesis[J/OL]. Front Cell Dev Biol, 2021, 9: 610683[2021-07-25]. https://pubmed.ncbi.nlm.nih.gov/34249897/. DOI: 10.3389/fcell.2021.610683.
- 19. Wang P, Yang X, Zhou N, et al. Identifying a potential key gene, TIMP1, associated with liver metastases of uveal melanoma by weight gene co-expression network analysis[J]. Onco Targets Ther, 2020, 13: 11923-11934. DOI: 10.2147/OTT.S280435.
- 20. Wei C, Zhao X, Wang L, et al. TRIP suppresses cell proliferation and invasion in choroidal melanoma via promoting the proteasomal degradation of Twist1[J]. Febs Lett, 2020, 594(19): 3170-3181. DOI: 10.1002/1873-3468.13882.
- 21. Wu S, Han M, Zhang C. Overexpression of microRNA-130a represses uveal melanoma cell migration and invasion through inactivation of the Wnt/beta-catenin signaling pathway by downregulating USP6[J/OL]. Cancer Gene Ther, 2021(2022-01-31)[2021-09-14]. https://pubmed.ncbi.nlm.nih.gov/34522027/. DOI: 10.1038/s41417-021-00377-7. [published online ahead of print].
- 22. Li Y, Zhang M, Feng H, et al. The tumorigenic properties of EZH2 are mediated by miR-26a in uveal melanoma[J/OL]. Front Mol Biosci, 2021, 8: 713542[2021-07-26]. https://pubmed.ncbi.nlm.nih.gov/34381816/. DOI: 10.3389/fmolb.2021.713542.
- 23. Lu L, Yu X, Zhang L, et al. The long non-coding RNA RHPN1-AS1 promotes uveal melanoma progression[J]. Int J Mol Sci, 2017, 18(1): 226. DOI: 10.3390/ijms18010226.
- 24. Hou Q, Han S, Yang L, et al. The interplay of microRNA-34a, LGR4, EMT-Associated factors, and MMP2 in regulating uveal melanoma cells[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4503-4510. DOI: 10.1167/iovs.18-26477.
- 25. Chen X, Wang J, Shen H, et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1193-1199. DOI: 10.1167/iovs.10-5272.
- 26. Wu S, Chen H, Zuo L, et al. Suppression of long non-coding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4[J]. Am J Physiol Cell Physiol, 2020, 318(5): C903-C912. DOI: 10.1152/ajpcell.00262.2019.
- 27. Li P, He J, Yang Z, et al. ZNNT1 long noncoding RNA induces autophagy to inhibit tumorigenesis of uveal melanoma by regulating key autophagy gene expression[J]. Autophagy, 2020, 16(7): 1186-1199. DOI: 10.1080/15548627.2019.1659614.
- 28. Wu S, Chen H, Han N, et al. Long noncoding RNA PVT1 silencing prevents the development of uveal melanoma by impairing microRNA-17-3p-dependent MDM2 upregulation[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4904-4914. DOI: 10.1167/iovs.19-27704.
- 29. Ding X, Wang X, Lin M, et al. PAUPAR lncRNA suppresses tumourigenesis by H3K4 demethylation in uveal melanoma[J]. Febs Lett, 2016, 590(12): 1729-1738. DOI: 10.1002/1873-3468.12220.
- 30. 杨文利. 超声造影在眼内肿瘤诊断的应用[J]. 中国医疗器械信息, 2012, 18(6): 6-8. DOI: 10.15971/j.cnki.cmdi.2012.06.007.Yang WL. Contrast enhanced ultrasound in the diagnoosis of intraocular tumors application[J]. China Medical Device Information, 2012, 18(6): 6-8. DOI: 10.15971/j.cnki.cmdi.2012.06.007.
- 31. 杨文利, 李栋军, 魏文斌. 超声造影剂时间-强度曲线在眼内肿瘤诊断及鉴别诊断的应用[J]. 中华眼底病杂志, 2012, 28(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2012.06.006.Yang WL, Li DJ, Wei WB. Time-intensity curve of contrast agent in intraocular tumor diagnosis and differential diagnosis[J]. Chin J Ocul Fundus Dis, 2012, 28(6): 569-572. DOI: 10.3760/cma.j.issn.1005-1015.2012.06.006.
- 32. 陈伟, 杨文利, 李栋军, 等. 超声弹性成像对眼内肿瘤的鉴别诊断价值[J]. 肿瘤影像学, 2016, 25(4): 303-307. DOI: 10.3969/j.issn.1008-617X.2016.04.003.Chen W, Yang WL, Li DJ, et al. Value of ultrasonic elastosonography in differential diagnosis of intraocular tumors[J]. Oncoradiology, 2016, 25(4): 303-307. DOI: 10.3969/j.issn.1008-617X.2016.04.003.
- 33. 孙明霞, 陈青华, 顼晓琳, 等. 成人眼球内葡萄膜黑色素瘤与非黑色素瘤MRI比较研究[J]. 中华放射学杂志, 2020, 54(3): 181-186. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.002.Sun MX, Chen QH, Xu XL, et al. Value of MRI in the differential diagnosis of uveal melanoma and other intraocular masses in adults[J]. Chin J Radiol, 2020, 54(3): 181-186. DOI: 10.3760/cma.j.issn.1005-1201.2020.03.002.
- 34. Su Y, Xu X, Wei W, et al. Using a novel MR imaging sign to differentiate retinal pigment epithelium from uveal melanoma[J]. Neuroradiology, 2020, 62(3): 347-352. DOI: 10.1007/s00234-019-02353-3.
- 35. 张举, 魏文斌, 李彬, 等. 葡萄膜黑色素瘤和视网膜组织相关性的病理学分析[J]. 国际眼科杂志, 2020, 20(2): 197-202. DOI: 10.3980/j.issn.1672-5123.2020.2.02.Zhang J, Wei WB, Li B, et al. Histopathological analysis of the correlation between uveal melanomas and retinal tissue[J]. Int Eye Sci, 2020, 20(2): 197-202. DOI: 10.3980/j.issn.1672-5123.2020.2.02.
- 36. 张举, 顼晓琳, 李彬, 等. 葡萄膜黑色素瘤瘤体生长对视网膜和巩膜浸润的影响[J]. 中华眼科杂志, 2016, 52(10): 749-754. DOI: 10.3760/cma.j.issn.0412-4081.2016.10.007.Zhang J, Xu XL, Li B, et al. Characteristics of retinal and scleral infiltration in uveal melanoma[J]. Chin J Ophthalmol, 2016, 52(10): 749-754. DOI: 10.3760/cma.j.issn.0412-4081.2016.10.007.
- 37. 杨晋波, 郑增光, 杨世峰, 等. 组织内AEG-1表达情况对葡萄膜黑色素瘤病理特征的影响[J]. 中国现代医生, 2020, 58(22): 139-142.Yang JB, Zheng ZG, Yang SF, et al. Effect of AEG-1 expression in tissues on pathology features of uveal melanoma[J]. China Modern Doctor, 2020, 58(22): 139-142.
- 38. Song H, Xu Q, Zhu Y, et al. Serum adsorption, cellular internalization and consequent impact of cuprous oxide nanoparticles on uveal melanoma cells: implications for cancer therapy[J]. Nanomedicine (Lond), 2015, 10(24): 3547-3562. DOI: 10.2217/nnm.15.178.
- 39. Shan S, Jia S, Lawson T, et al. The use of TAT peptide-functionalized graphene as a highly nuclear-targeting carrier system for suppression of choroidal melanoma[J/OL]. Int J Mol Sci, 2019, 20(18): 4454[2019-09-10]. https://pubmed.ncbi.nlm.nih.gov/31509978/. DOI: 10.3390/ijms20184454.
- 40. Li Y, He J, Qiu C, et al. The oncolytic virus H101 combined with GNAQ siRNA-mediated knockdown reduces uveal melanoma cell viability[J]. J Cell Biochem, 2019, 120(4): 5766-5776. DOI: 10.1002/jcb.27863.
- 41. Liu S, Song W, Liu F, et al. Antitumor efficacy of VP22-CD/5-FC suicide gene system mediated by lentivirus in a murine uveal melanoma model[J]. Exp Eye Res, 2018, 172: 144-151. DOI: 10.1016/j.exer.2018.04.009.
- 42. Gong Q, Wan Q, Li A, et al. Development and validation of an immune and stromal prognostic signature in uveal melanoma to guide clinical therapy[J]. Aging (Albany NY), 2020, 12(20): 20254-20267. DOI: 10.18632/aging.103779.
- 43. Zhang Z, Su J, Li L, et al. Identification of precise therapeutic targets and characteristic prognostic genes based on immune gene characteristics in uveal melanoma[J/OL]. Front Cell Dev Biol, 2021, 9: 666462[2021-05-26]. https://pubmed.ncbi.nlm.nih.gov/34124047/. DOI: 10.3389/fcell.2021.666462.
- 44. Zhou J, Liu S, Wang Y, et al. Salinomycin effectively eliminates cancer stem-like cells and obviates hepatic metastasis in uveal melanoma[J]. Mol Cancer, 2019, 18(1): 159. DOI: 10.1186/s12943-019-1068-1.
- 45. Zhang L, Huang X, Guo T, et al. Study of cinobufagin as a promising anticancer agent in uveal melanoma through intrinsic apoptosis pathway[J/OL]. Front Oncol, 2020, 10: 325[2020-04-02]. https://pubmed.ncbi.nlm.nih.gov/32300551/. DOI: 10.3389/fonc.2020.00325.
- 46. Xue C, Chen Y, Hu DN, et al. Chrysin induces cell apoptosis in human uveal melanoma cells via intrinsic apoptosis[J]. Oncol Lett, 2016, 12(6): 4813-4820. DOI: 10.3892/ol.2016.5251.
- 47. Yan F, Liao R, Silva M, et al. Pristimerin-induced uveal melanoma cell death via inhibiting PI3K/Akt/FoxO3a signalling pathway[J]. J Cell Mol Med, 2020, 24(11): 6208-6219. DOI: 10.1111/jcmm.15249.
- 48. Shi ML, Chen YF, Wu WQ, et al. Luteolin inhibits the proliferation, adhesion, migration and invasion of choroidal melanoma cells in vitro[J/OL]. Exp Eye Res, 2021, 210: 108643[2021-05-29]. https://pubmed.ncbi.nlm.nih.gov/34058231/. DOI: 10.1016/j.exer.2021.108643.
- 49. Zhang Q, Zhang Q, Li H, et al. LiCl induces apoptosis via CHOP/NOXA/Mcl-1 axis in human choroidal melanoma cells[J]. Cancer Cell Int, 2021, 21(1): 96. DOI: 10.1186/s12935-021-01778-2.
- 50. Juan L, Diandian W, Jianfeng W, et al. Efficient anticancer effect on choroidal melanoma cells induced by tanshinone ⅡA photosensitization[J]. Photochem Photobiol, 2021, 97(4): 841-850. DOI: 10.1111/php.13399.
- 51. Dong L, You S, Zhang Q, et al. Arylsulfonamide 64B inhibits hypoxia/HIF-Induced expression of c-Met and CXCR4 and reduces primary tumor growth and metastasis of uveal melanoma[J]. Clin Cancer Res, 2019, 25(7): 2206-2218. DOI: 10.1158/1078-0432.CCR-18-1368.
- 52. Geng B, Zhu Y, Yuan Y, et al. Artesunate suppresses choroidal melanoma vasculogenic mimicry formation and angiogenesis via the Wnt/CaMKII signaling axis[J/OL]. Front Oncol, 2021, 11: 714646[2021-08-12]. https://pubmed.ncbi.nlm.nih.gov/34476217/. DOI: 10.3389/fonc.2021.714646.
- 53. Yang JY, Wang Q, Chen MX, et al. Retinal microvascular changes in uveal melanoma following conbercept injection after plaque radiotherapy as detected by optical coherence tomographic angiography[J]. Retina, 2021, 41(12): 2605-2611. DOI: 10.1097/IAE.0000000000003236.
- 54. 王倩, 杨婧研, 刘月明, 等. 脉络膜黑色素瘤局部放射治疗后黄斑部视网膜脉络膜血流变化的研究[J]. 眼科, 2021, 30(2): 102-107. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.005.Wang Q, Yang JY, Liu YM, et al. Longitudinal detection of radiation-induced macular retinal and choroidal capillary density changes with OCT angiography in choroidal melanoma[J]. Ophthalmology in China, 2021, 30(2): 102-107. DOI: 10.13281/j.cnki.issn.1004-4469.2021.02.005.
- 55. Fang R, Wang H, Li Y, et al. Regression patterns of uveal melanoma after iodine-125 plaque brachytherapy[J]. BMC Ophthalmol, 2021, 21(1): 137. DOI: 10.1186/s12886-021-01898-3.
- 56. Hong M, Wei W, Hua L, et al. Clinical observation of local resection or enucleation for uveal melanoma[J]. Chin Med J (Engl), 2014, 127(19): 3459-3463. DOI: 10.3760/cma.j.issn.0366-6999.20141332.
- 57. Yue H, Qian J, Yuan Y, et al. Clinicopathological characteristics and prognosis for survival after enucleation of uveal melanoma in chinese patients: long-term follow-up[J]. Curr Eye Res, 2017, 42(5): 759-765. DOI: 10.1080/02713683.2016.1245422.
- 58. Dai W, Liu S, Wang S, et al. Activation of transmembrane receptor tyrosine kinase DDR1-STAT3 cascade by extracellular matrix remodeling promotes liver metastatic colonization in uveal melanoma[J]. Signal Transduct Target Ther, 2021, 6(1): 176. DOI: 10.1038/s41392-021-00563-x.
- 59. Zhang J, Liu S, Ye Q, et al. Transcriptional inhibition by CDK7/9 inhibitor SNS-032 abrogates oncogene addiction and reduces liver metastasis in uveal melanoma[J]. Mol Cancer, 2019, 18(1): 140. DOI: 10.1186/s12943-019-1070-7.
- 60. Jin B, Zhang P, Zou H, et al. Verification of EZH2 as a druggable target in metastatic uveal melanoma[J]. Mol Cancer, 2020, 19(1): 52. DOI: 10.1186/s12943-020-01173-x.
-
Previous Article
双眼多灶性脉络膜炎 -
Next Article
Research progress of single-cell transcriptome sequencing in uveal melanoma