• Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin 300020, China;
Chen Song, Email: chensong9999@126.com
Export PDF Favorites Scan Get Citation

The classical Hippo pathway leads to the phosphorylation of downstream effector molecules Hippo-Yes-associated protein (Yap) and transcriptional coactivator PDZ-binding motif (Taz) serine sites through a kinase response, thereby promoting cell proliferation, controlling cell polarity, changing cytoskeleton, it plays an important regulatory role in various pathophysiological processes such as epithelial-mesenchymal transition and inhibition of cell contact. Studies have shown that Yap/Taz can affect the progression of vitreoretinal diseases, opening up new prospects for the pathogenesis and clinical treatment of diabetic retinopathy, proliferative vitreoretinopathy, and retinal ischemia-reperfusion injury. Exploring the molecular mechanism of Yap/Taz provides a possible therapeutic target for future research in the treatment of retinal fibrosis diseases such as diabetic retinopathy and proliferative vitreoretinopathy. At the same time, regulating the activity of local Yap/Taz in the retina will also become an effective therapeutic target for damage-repair in retinal ischemia-reperfusion injury. However, Yap inhibitors have potential retinal toxicity and are still in the preclinical development stage. Further research on the mechanism of action and clinical safety of Yap inhibitors will provide new methods for the treatment of retinal diseases.

Citation: Zhang Wei, Chen Song. Recent research progress on the role of Hippo-Yap signaling pathway in retinal diseases. Chinese Journal of Ocular Fundus Diseases, 2022, 38(10): 867-871. doi: 10.3760/cma.j.cn511434-20210406-00172 Copy

Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved

  • Previous Article

    Research progress of Müller cell and macular hole